Published online by Cambridge University Press: 17 February 2009
We consider in this paper a topology (which we call the A-topology) on Minkowski space, the four-dimensional space–time continuum of special relativity and derive its group of homeomorphisms. We define the A-topology to be the finest topology on Minkowski space with respect to which the induced topology on time-like and light-like lines is one-dimensional Euclidean and the induced topology on space-like hyperplanes is three- dimensional Euclidean. It is then shown that the group of homeomorphisms of this topology is precisely the one generated by the inhomogeneous Lorentz group and the dilatations.