Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:30:09.274Z Has data issue: false hasContentIssue false

Asymptotic distribution of singularities of solutions of Matrix-Riccati differential equations

Published online by Cambridge University Press:  17 February 2009

Gerhard Jank
Affiliation:
Lehrstuhl II für Mathematik, RWTH Aachen, Templergraben 55, D-5100 Aachen, Federal Republic of, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present paper, we make use of the method of asymptotic integration to get estimates on those regions in the complex plane where singularities and critical points of solutions of the Matrix-Riccati differential equation with polynomial co-efficients may appear. The result is that most of these points lie around a finite number of permanent critical directions. These permanent directions are defined by the coefficients of the differential equation. The number of singularities outside certain domains around the permanent critical directions, in a circle of radius r, is of growth O(log r). Applications of the results to periodic solutions and to the determination of critical points are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1] Ahlfors, L. V., Complex analysis, [3rd edition], (McGraw Hill, New York-Toronto-London 1979).Google Scholar
[2] Balser, W., “Einige beiträge zur invariantentheorie meromorpher differential-gleichungen”, Habil-Schrift, Ulm 1978.Google Scholar
[3] Dietrich, V., “Newton-Puiseux-Diagramm für systeme linearer differentialgleichungen”, Complex Variables Theory Appl. 7 (1987), 265296.Google Scholar
[4] Dietrich, V., “ELISE, an algorithm to compute asymptotic representations, realized with the computer algebra system MAPLE”, preprint, 1989.Google Scholar
[5] Dietrich, V., “Über die annahme der möglichen wachstumsordnungen and typen beilinearen differentialgleichungen, Habiltationsschrift”, RWTH Aachen, 1990.Google Scholar
[6] Henrici, P., Applied and computational complex analysis, Vol. 2, (John Wiley, New York-London-Sydney-Toronto, 1977).Google Scholar
[7] Hewer, G. A., “Periodicity, detectability and the Matrix Riccati equation”, SIAM J Control 13 (1975) 12351251.CrossRefGoogle Scholar
[8] Jank, G. and Volkmann, L., Meromorphe funktionen und differentialgleichungen, UTB-Große Reihe, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1985.Google Scholar
[9] Jank, G., “Growth properties and values distribution of transcendental solutions of Riccati differential equations”, preprint, 1989.Google Scholar
[10] Jurkat, W. B., Meromorphe differentialgleichungen, Lecture Notes in Mathematics No. 637, (Springer Verlag, Berlin-Heidelberg-New York, 1978).CrossRefGoogle Scholar
[11] Leipnik, R. B., “A canonical form and solution for the Matrix Riccati Differential Equation”, J. Austral Math. Soc. Ser. B, 26 (1985) 355361.CrossRefGoogle Scholar
[12] Lewin, B. J., Nullstellenverteilung ganzer funktionen, (Akademie Verlag, Berlin, 1962).CrossRefGoogle Scholar
[13] Nevanlinna, R., “Zur Theorie der meromorphen Funktionen”, Acta Math., 46 (1925) 199.CrossRefGoogle Scholar
[14] Reid, W. T., Riccati differential equations, (Academic Press, New York-London, 1972).Google Scholar
[15] Wasow, W., Asymptotic expansions for ordinary differential equations, (John Wiley, New York, 1965).Google Scholar