Published online by Cambridge University Press: 17 February 2009
A general condition is provided from which an error bound can be concluded for approximations of queueing networks which are based on modifications of the transition and state space structure. This condition relies upon Markov reward theory and can be verified inductively in concrete situations. The results are illustrated by estimating the accuracy of a simple throughput bound for a closed queueing network with alternate routing and a large finite source input. An explicit error bound for this example is derived which is of order M—1, where M is the number of sources.