Published online by Cambridge University Press: 17 February 2009
A steady two-dimensional free-surface flow in a channel of finite depth is considered. The channel ends abruptly with a barrier in the form of a vertical wall of finite height. Hence the stream, which is uniform far upstream, is forced to go upward and then falls under the effect of gravity. A configuration is examined where the rising stream splits into two jets, one falling backward and the other forward over the wall, in a fountain-like manner. The backward-going jet is assumed to be removed without disturbing the incident stream. This problem is solved numerically by an integral-equation method. Solutions are obtained for various values of a parameter measuring the fraction of the total incoming flux that goes into the forward jet. The limit where this fraction is one is also examined, the water then all passing over the wall, with a 120° corner stagnation point on the upper free surface.