Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T09:04:56.366Z Has data issue: false hasContentIssue false

ANALYSIS OF CELL TRANSMISSION MODEL FOR TRAFFIC FLOW SIMULATION WITH APPLICATION TO NETWORK TRAFFIC

Published online by Cambridge University Press:  18 May 2021

A. S. MAULANA*
Affiliation:
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung40132, Indonesia; [email protected]
S. R. PUDJAPRASETYA
Affiliation:
Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung40132, Indonesia; [email protected]

Abstract

The cell transmission model (CTM) is a macroscopic model that describes the dynamics of traffic flow over time and space. The effectiveness and accuracy of the CTM are discussed in this paper. First, the CTM formula is recognized as a finite-volume discretization of the kinematic traffic model with a trapezoidal flux function. To validate the constructed scheme, the simulation of shock waves and rarefaction waves as two important elements of traffic dynamics was performed. Adaptation of the CTM for intersecting and splitting cells is discussed. Its implementation on the road segment with traffic influx produces results that are consistent with the analytical solution of the kinematic model. Furthermore, a simulation on a simple road network shows the back and forth propagation of shock waves and rarefaction waves. Our numerical result agrees well with the existing result of Godunov’s finite-volume scheme. In addition, from this accurately proven scheme, we can extract information for the average travel time on a certain route, which is the most important information a traveller needs. It appears from simulations of different scenarios that, depending on the circumstances, a longer route may have a shorter travel time. Finally, there is a discussion on the possible application for traffic management in Indonesia during the Eid al-Fitr exodus.

Type
Research Article
Copyright
© Australian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boel, R. and Mihaylova, L., “A compositional stochastic model for real time freeway traffic simulation”, Transport. Res. B-Meth. 40 (2006), 319334; doi:10.1016/j.trb.2005.05.001.CrossRefGoogle Scholar
Chen, X., Shi, Q. and Li, L., “Location specific cell transmission model for freeway traffic”, Tsinghua Sci. Technol. 15 (2010) 475480; doi:10.1016/S1007-0214(10)70090-0.CrossRefGoogle Scholar
Daganzo, C. F., “The cell transmission model: a dynamic representation of highway traffic consistent with hydrodynamic theory”, Transport. Res. B-Meth. 28B (1994) 269287; doi:10.1016/0191-2615(94)90002-7.CrossRefGoogle Scholar
Daganzo, C. F., “The cell transmission model, part II: network traffic”, Transport. Res. B-Meth. 29B (1995) 7993; doi:10.1016/0191-2615(94)00022-R.CrossRefGoogle Scholar
Daiheng, N., Traffic flow theory: characteristics, experimental methods, and numerical techniques, (Elsevier, Oxford, 2016) doi:10.1016/C2015-0-01702-6; ISBN: 978-0-12-804134-5.Google Scholar
Gomes, G., Horowitz, R., Kurzhanskiy, A. A., Varaiya, P. and Kwon, J., “Behavior of the cell transmission model and effectiveness of ramp metering”, Transport. Res. Part C Emerg. Technol. 16 (2008) 485513; doi:10.1016/j.trc.2007.10.005.CrossRefGoogle Scholar
Haberman, R., Mathematical models: mechanical vibrations, population dynamics, and traffic flow (Prentice Hall, Hoboken, NJ, 1977) doi:10.1137/1.9781611971156.fm.Google Scholar
Lebacque, J. P., “The Godunov scheme and what it means for first order traffic flow models”, Proc. 13th Int. Symp. Transport. Traffic Theory, Lyon, France 24–26 July, 1996, (Elsevier, Oxford, 1996).Google Scholar
LeVeque, R. J., Numerical methods for conservation laws, Lect. in Math. ETH Zurich. 1st edn (Springer Basel, Basel, 1990) ISBN 978-3-0348-5116-9; doi:10.1007/978-3-0348-5116-9.CrossRefGoogle Scholar
Long, J., Gao, Z., Zhao, X., Lian, A. and Orenstein, P., “Urban traffic jam simulation based on the cell transmission model”, Netw. Spat. Econ. 11 (2011) 4364; doi:10.1007/s11067-008-9080-9.CrossRefGoogle Scholar
Muñoz, L., Sun, X., Horowitz, R. and Alvarez-Icaza, L., “Traffic density estimation with the cell transmission model”, Proc. 2003 Amer. Control Conf., Denver, CO, 4–6 June 2003, Volume 5 (Institute of Electrical and Electronics Engineers (IEEE), Denver, CO, 2003) 37503755; doi:10.1109/ACC.2003.1240418.CrossRefGoogle Scholar
Orosz, G., Wilson, R. E. and Stépán, G., “Traffic jams: dynamics and control”, Philos. Trans. R. Soc. A 368 (2010) 44554479; doi:10.1098/rsta.2010.0205.CrossRefGoogle ScholarPubMed
Papageorgiou, M., “Dynamic modelling, assignment and route guidance in traffic networks”, Transport. Res. B-Meth. 24 (1990) 471495; doi:10.1016/0191-2615(90)90041-V.CrossRefGoogle Scholar
Pudjaprasetya, S. R., Bunawan, J. and Novtiar, C., “Traffic light or roundabout? Analysis using the modified kinematic LWR model”, East Asian J. Appl. Math. 4 (2016) 8088; doi:10.4208/eajam.210815.281215a.CrossRefGoogle Scholar
Pudjaprasetya, S. R. and Kamalia, P. Z., “Finite volume method for simulations of traffic dynamics with exits and entrances”, ANZIAM J. 60 (2018) 124; doi:10.21914/anziamj.v60i0.12435.CrossRefGoogle Scholar
Sumalee, A., Zhong, R. X., Pan, T. L. and Szeto, W. Y., “Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment”, Transport. Res. B-Meth. 45 (2011) 507533; doi:10.1016/j.trb.2010.09.006.CrossRefGoogle Scholar
Wenlong, J., Kinematic wave model of network vehicular traffic (University of California, Davis, CA, 2003) arXiv:math/0309060.pdf.Google Scholar
Zhang, H. M., Yu, N. and Zhen, Q., “Modelling network flow with and without link interactions: the cases of point queue, spatial queue and cell transmission model”, Transportmetrica B 1 (2013) 3351; doi:10.1080/21680566.2013.785921.Google Scholar