Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:28:46.607Z Has data issue: false hasContentIssue false

On human blood, rock art and calcium oxalate: further studies on organic carbon content and radiocarbon age of materials relating to Australian rock art

Published online by Cambridge University Press:  02 January 2015

Richard Gillespie*
Affiliation:
Dizzy Heights, Ripps Road, Stokers Siding NSW 2484, Australia. E-mail: [email protected]

Extract

Minute biological traces, with their prospect of recovering even ancient DNA, are the most attractive of archaeological materials to work with. This supplementary report on field studies of rock-art first published in ANTIQUITY further explores how these studies may in truth be carried out.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R.. 1988. Improved collagen extraction by modified Longin method, Radiocarbon 30: 171–7.Google Scholar
Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P.. 1982. Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets, Science 216: 1131–2.Google Scholar
Clottes, J. 1996. Thematic changes in Upper Palaeolithic art: a view from the Crotte Chauvet, Antiquity 70: 276–88.Google Scholar
Dayton, L. & Mcdonald, M.. 1993. The atomic age of cave art, New Scientist 137(1862): 34–7.Google Scholar
Downs, E. F. & Lowenstein, J. M.. 1995. Identification of archaeological blood proteins: a cautionary note, Journal of Archaeological Science 22: 1116.Google Scholar
Denirq, M.J. & Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals, Geochimica et Cosmochimica Acta 42: 495506.CrossRefGoogle Scholar
Fiedel, S. J. 1996. Blood from stones? Some methodological and interpretative problems in hlood residue analysis, fouinai of Archaeological Science 23: 139–47.Google Scholar
Gillespie, R. & HEDGKS, R. E. M.. 1984. Laboratory contamination in radiocarbon accelerator mass spectrometry, Nuclear Instruments and Methods 233: 294–6.Google Scholar
Gowlett, J. A. J. & Hedges, R. E. M.. 1986. Lessons of context and contamination in dating the Upper Palaeolithic, in Gowlett & Hedges (ed.), Archaeological results from accelerator dating: 6371. Oxford: Oxford University Committee for Archaeology. Monograph 11.Google Scholar
Grace, W. R. & Company. 1990. Centneon™microconcentrators for small-volume concentration. Beverly (MA): Amicon Division Publication 1-259G.Google Scholar
Jul, A. J. T., Donahue, D. J. & Toolin, L. J.. 1990. Recovery from tracer contamination in AMS sample preparation, Radiocarbon 32(1): 84–5.Google Scholar
Lowe, D. C. & Judd, W. J.. 1987. Graphite target preparation for radiocarbon dating by accelerator mass spectrometry, Nuclear Instruments and Methods B28: 113–10.Google Scholar
Loy, T. H. 1994. Direct dating of rock art at Laurie Creek (NT), Australia: a reply to Nelson, Antiquity 68: 147–8.Google Scholar
Loy, T. H., Jones, R., Nelson, D. E., Meehan, B., Vogel, J., Southon, J. & Cosgrove, R.. 1990. Accelerator radiocarbon dating of human blood proteins in pigments from Late plei stocene art sites in Australia, Antiquity 64: 110–16.Google Scholar
Nelson, D. E. 1991. A new method for carbon isotope analysis of protein, Science 251: 552–4.Google Scholar
Nelson, D. E. 1993. Second thoughts on a rock art date, Antiquity 67: 893–5.Google Scholar
Ralph, E. K. 1971. Carbon-14 dating, in Michael, H. N. & Ralph, E. K. (ed.), Dating techniques for the archaeologist: 148. Cambridge (MA): MIT Press.Google Scholar
Russ, J., Hyman, M., Shafer, H. J. & Rowe, W.. 1990. Radiocarbon dating of prehistoric rock paintings by selective oxidation of organic carbon, Nature 348: 710–11.Google Scholar
Valladas, H., Cachier, H. & Arnold, M.. 1990. AMS C-14 dates for the prehistoric Cougnac cave paintings and related bone remains, Rock Art Research 7(1): 1819.Google Scholar
Van Der Merwe, N.J., Sealy, J. & Yates, R., 1987. First accelerator carbon-14 date from a rock painting, South African fournal of Science 83: 56–7.Google Scholar
Voce, L, I, A.. 1954. A textbook of macro and semimicro qualitative inorganic analysis. 4th Edition. London: Longmans.Google Scholar
Vogel, J. S., Nelson, D. E. & Southon, J. R.. 1989. Accuracy and precision in dating microgram carbon samples, Radiocarbon 31: 145–9.Google Scholar
Vogel, J. S., Southon, J. R. & Nelson, D. E.. 1990. Memory effects in an AMS system: catastrophe and recovery, Radiocarbon 32: 81–3.Google Scholar
Watchman, A. L. 1990. A summary of occurrences of oxalate-rich crusts in Australia, Rock Art Research 7(1): 4450.Google Scholar
Watchman, A. L. 1993. Evidence of a 25,000 year old picto-graph in northern Australia, Geoarchaeology 8: 465–73.Google Scholar
Watchman, A. L. it Campbell, J.. 1996. Microstratigraphic analyses of laminated oxalate crusts in northern Australia, in Realini, M. & Toniolo, L. (ed.), Oxalate films in the conservation of works of art: Proceedings of the 11 International Symposium, Milan: 409–22. Bologna: Editeam.Google Scholar