Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T00:08:41.392Z Has data issue: false hasContentIssue false

The older, the better? On the radiocarbon dating of Upper Palaeolithic burials in Northern Eurasia and beyond

Published online by Cambridge University Press:  12 August 2019

Yaroslav V. Kuzmin*
Affiliation:
Sobolev Institute of Geology & Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyug Avenue 3, Novosibirsk 630090, Russia Laboratory of Mesozoic & Cenozoic Continental Ecosystems, Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia (Email: [email protected]; [email protected])

Abstract

The reliability of radiocarbon dates for Palaeolithic human burials is of utmost importance for prehistoric archaeologists. Recently obtained dates for several such burials in central Russia raise important interrelated issues concerning site taphonomy and the precise radiocarbon-dating technique employed, with implications for the ‘true’ age of the burials. A critical review of the dating of the Sungir and Kostenki burials calls into question the reliability of employing ultrafiltration or single amino acids for the radiocarbon dating of Upper Palaeolithic bones.

Type
Debate
Copyright
Copyright © Antiquity Publications Ltd, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bader, O.N. & Bader, N.O.. 2000. Upper Palaeolithic site Sunghir, in Alekseeva, T.I. & Bader, N.O. (ed.) Homo sungirensis. Upper Palaeolithic man: ecological and evolutionary aspects of the investigation: 2129. Moscow: Nauchny Mir (in Russian).Google Scholar
Becerra-Valdivia, L., Waters, M.R., Stafford, T.W. Jr, Anzick, S.L., Comeskey, D., Devièse, T. & Higham, T.. 2018. Reassessing the chronology of the archaeological site of Anzick. Proceedings of the National Academy of Sciences of the USA 115: 70007003. http://www.pnas.org/content/115/27/7000Google Scholar
Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. Bronk. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52: 103–12. https://doi.org/10.1017/S0033822200045069Google Scholar
Dinnis, R., Bessudnov, A., Reynolds, N., Devièse, T., Pate, A., Sablin, M., Sinitsyn, A. & Higham, T.. 2019. New data for the Early Upper Palaeolithic of Kostenki (Russia). Journal of Human Evolution 127: 2140. https://doi.org/10.1016/j.jhevol.2018.11.012Google Scholar
Gillespie, R. & Hedges, R.E.M.. 1983. Sample chemistry for the Oxford high energy mass spectrometer. Radiocarbon 25: 771–74. https://doi.org/10.1017/S0033822200006123Google Scholar
Grün, R. 2006. Direct dating of human fossils. Yearbook of Physical Anthropology 49: 248. https://doi.org/10.1002/ajpa.20516Google Scholar
Higham, T. 2011. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85: 235–49. https://doi.org/10.1017/S0003598X00067570Google Scholar
Higham, T.F.G., Jacobi, R.M. & Ramsey, C. Bronk. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48: 179–95. https://doi.org/10.1017/S0033822200066388Google Scholar
Hoffecker, J.F. 2002. Desolate landscapes: Ice-Age settlement of Eastern Europe. New Brunswick (NJ): Rutgers University Press.Google Scholar
Hoffecker, J.F. 2017. Modern humans: their African origin and global dispersal. New York: Columbia University Press.Google Scholar
Holliday, V.T., Hoffecker, J.F., Goldberg, P., Macphail, R.I., Forman, S.L., Anikovich, M. & Sinitsyn, A.. 2007. Geoarchaeology of the Kostenki-Borshchevo sites, Don River valley, Russia. Geoarchaeology 22: 181228. https://doi.org/10.1002/gea.20163Google Scholar
Keates, S.G., Hodgins, G.W.L., Kuzmin, Y.V. & Orlova, L.A.. 2007. First direct dating of a presumed Pleistocene hominid from China: AMS radiocarbon age of a femur from the Ordos Plateau. Journal of Human Evolution 53: 15. https://doi.org/10.1016/j.jhevol.2006.10.006Google Scholar
Krause, J., Orlando, L., Serre, D., Viola, B., Prüfer, K., Richards, M.P., Hublin, J.-J., Hänni, C., Derevianko, A.P. & Pääbo, S.. 2007. Neanderthals in Central Asia and Siberia. Nature 449: 902904. https://doi.org/10.1038/nature06193Google Scholar
Kuzmin, Y.V. & Keates, S.G.. 2014. Direct radiocarbon dating of Late Pleistocene hominids in Eurasia: current status, problems, and perspectives. Radiocarbon 56: 753–66. https://doi.org/10.2458/56.16936Google Scholar
Kuzmin, Y.V., van der Plicht, J. & Sulerzhitsky, L.D.. 2014. Puzzling radiocarbon dates for the Upper Paleolithic site of Sungir (central Russian Plain). Radiocarbon 56: 451–59. https://doi.org/10.2458/56.17038Google Scholar
Kuzmin, Y.V., Fiedel, S.J., Street, M., Reimer, P.J., Boudin, M., van der Plicht, J., Panov, V.S. & Hodgins, G.W.L.. 2018. A laboratory inter-comparison of AMS 14C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quaternary Geochronology 48: 716. https://doi.org/10.1016/j.quageo.2018.07.008Google Scholar
Lavrushin, Y.A., Sulerzhitski, L.D. & Spiridonova, E.A.. 2000. Age of the Sunghir archaeological site and environmental conditions at the time of the prehistoric man, in Alekseeva, T.I. & Bader, N.O. (ed.) Homo sungirensis. Upper Palaeolithic man: ecological and evolutionary aspects of the investigation: 3542. Moscow: Nauchny Mir (in Russian).Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230: 241–42. https://doi.org/10.1038/230241a0Google Scholar
Marom, A., McCullagh, J.S.O., Higham, T.F.G., Sinitsyn, A.A. & Hedges, R.E.M.. 2012. Single amino acid radiocarbon dating of Upper Paleolithic modern humans. Proceedings of the National Academy of Sciences of the USA 109: 6878–881. https://doi.org/10.1073/pnas.1116328109Google Scholar
Nalawade-Chavan, S., McCullagh, J. & Hedges, R.. 2014. New hydroxyproline radiocarbon dates from Sungir’, Russia, confirm Early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9: e76896. https://doi.org/10.1371/journal.pone.0076896Google Scholar
Nikolskiy, P.A., Sulerzhitsky, L.D. & Pitulko, V.V.. 2011. Last straw versus blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quaternary Science Reviews 30: 2309–328. https://doi.org/10.1016/j.quascirev.2010.10.017Google Scholar
Philben, M. & Benner, R.. 2013. Reactivity of hydroxyproline-rich glycoproteins and their potential as biochemical tracers of plant-derived nitrogen. Organic Geochemistry 57: 1122. https://doi.org/10.1016/j.orggeochem.2013.01.003Google Scholar
Praslov, N.D. & Sulerzhitski, L.D.. 1999. New data on the chronology of Paleolithic sites in Kostenki-on-Don. Doklady Earth Sciences 365: 196200.Google Scholar
Rasmussen, S.O. et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106: 1428. https://doi.org/10.1016/j.quascirev.2014.09.007Google Scholar
Reynolds, N., Dinnis, R., Bessudnov, A.A., Devièse, T. & Higham, T.. 2017. The Kostënki 18 child burial and the cultural and funerary landscape of Mid Upper Palaeolithic European Russia. Antiquity 91: 1435–50. https://doi.org/10.15184/aqy.2017.150Google Scholar
Seguin-Orlando, A., Korneliussen, T.S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, I., Albrechtsen, A., Ko, A., Margaryan, A., Moiseyev, V., Goebel, T., Westaway, M., Lambert, D., Khartanovich, V., Wall, J.D., Nigst, P.R., Foley, R.A., Lahr, M.M., Nielsen, R., Orlando, L. & Willerslev, E.. 2014. Genomic structure in Europeans dating back at least 36,200 years. Science 356: 1113–18. https://doi.org/10.1126/science.aaa0114Google Scholar
Seierstad, I.K., Abbott, P.M., Bigler, M., Blunier, T., Bourne, A.J., Brook, E., Buchardt, S.L., Buizert, C., Clausen, H.B., Cook, E., Dahl-Jensen, D., Davies, S.M., Guillevic, M., Johnsen, S.J., Pedersen, D.S., Popp, T.J., Rasmussen, S.O., Severinghaus, J.P., Svensson, A. & Vinther, B.M.. 2014. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews 106: 2946. https://doi.org/10.1016/j.quascirev.2014.10.032Google Scholar
Soffer, O. 2003. Mammoth bone accumulations: death sites? Kill sites? Dwellings?, in Vasil'ev, S.A., Soffer, O. & Kozlowski, J. (ed.) Perceived landscapes and built environments: the cultural geography of Late Pleistocene Eurasia: 3946. Oxford: Archaeopress.Google Scholar
Stafford, T.W. Jr, Hare, P.E., Currie, L., Jull, A.J.T. & Donahue, D.J.. 1991. Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18: 3572. https://doi.org/10.1016/0305-4403(91)90078-4Google Scholar
Sulerzhitski, L.D., Pettitt, P. & Bader, N.O.. 2000. Radiocarbon dates of the remains from the settlement Sunghir, in Alekseeva, T.I. & Bader, N.O. (ed.) Homo sungirensis. Upper Palaeolithic man: ecological and evolutionary aspects of the investigation: 3034. Moscow: Nauchny Mir (in Russian).Google Scholar
Taylor, R.E. 2009. Six decades of radiocarbon dating in New World archaeology. Radiocarbon 51: 173212. https://doi.org/10.1017/S0033822200033774Google Scholar
Trinkaus, E. 2005. Early modern humans. Annual Review of Anthropology 34: 207–30. https://doi.org/10.1146/annurev.anthro.34.030905.154913Google Scholar
Trinkaus, E., Buzhilova, A.P., Mednikova, M.B. & Dobrovolskaya, M.V. (ed.). 2014. The people of Sunghir: burials, bodies, and behavior in the Earlier Upper Paleolithic. New York: Oxford University Press.Google Scholar