Article contents
Middle and Upper Palaeolithic environments and the calibration of 14C dates beyond 10,000 BP
Published online by Cambridge University Press: 02 January 2015
Abstract
Advances in our understanding of the Quaternary history of the earth's magnetic field provide the means to correct the radiocarbon time-scale for long-term (millennia) deviations from the calendrical one beyond the upper limit of the tree-ring-based calibration. The conversion is essential when Middle and Upper Palaeolithic archaeological sites are to be placed within the context of the complex climatic history of the last glacial interval and following deglaciation.
- Type
- Papers
- Information
- Copyright
- Copyright © Antiquity Publications Ltd. 1998
References
Bard, E., Hamelin, B., Fairbanks, R.G. & Zindler, A.
1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometry U-Th ages from Barbados corals, Nature
345: 405–9.Google Scholar
Bard, E., Arnold, M., Fairbanks, R.G. & Hamelin, B.
1993.
230Th 234U and 14C ages obtained by mass spectrometry on corals, Radiocarbon
35: 191–9.CrossRefGoogle Scholar
Bond, G.C.I, Broecker, W.D., Johnsen, S., Mcmanus, J., Labeyrie, L., jouzel, J. & Bonani, G.
1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature
365: 143–7.Google Scholar
Bond, G., Showers, W., Chseby, M., Lotti, R.
Almasi, P., Demenocat, P., Priore, P., Cullen, H., Hajdas, i. & Bonani, G.
1997. A pervasive millennial-scale cycle in North Atlan-tic Holocene and glacial climates, Science
278: 1257–66
Google Scholar
Bkucxio, A.
1996. The appearance of modern humans in Europe: The archaeological evidence from the Mediterranean, XIIIInternationd Congress: 237–49.Google Scholar
Coope, G.R., Gibbarda, P.L., Hall, A.R., Preece, R.C.,Roblnson, J.E. & Surclim, A.J. In press. Climatic and environmental reconstructions based on fossil assemblages from Middle Devensian (Weichselian) deposits of the River Thames at South Kensington, central London, Quaternary Science Reviews.Google Scholar
Dansgaaru, W., Johnsen, S.J., Clausend, H.B.,. Daiil-Jensen, , Gijndestriip, N.S., Hammerc, C.U.,. Hvidberg, S., Steffensen, J.P., Sveinbjörnsdottir, H., Jouzei, H.J. & Bond, G.
1993. Evidence for general instability of past climate from a 250-kyr ice-core record, Nature
364: 218–20.Google Scholar
Fairbanks, R.G.
1989. A 17,000-year glacio-eustatic sea-lcvel record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation, Nature
343: 63742.Google Scholar
Gamble, G.S.
1986. The Palaeolithic Settlement Of Europe. Cambridge: Cambridge University Press.Google Scholar
Gamble, G.S.
1987. Man the shoveler: Alternative models for Middle Pleistocene colonization and occupation in northern latitudes, in Softer, O. (ed.). The Pleistocene Old World, Regional Perspectives: 98. New York (NY): Plenum Press.Google Scholar
Gamble, G.S.
1993. People on the move: interpretations of regional variation in Palaeolithic Europe, in Chapman, J. & Dolukhanov, P. (ed.). Cultural Transformations And Interactions In Eastern Europe: 36–55. Aldershot: Avebury.Google Scholar
Grip,
(Greenland Ice-Core Project) Members. 1993. Climate instability during the last interglacial period recorded in the GRIP ice core, Nature
364, 203–7.Google Scholar
Grün, R. (ed.). 1994. Quaternary geoohronology, Quaternary Science Reviews
13: 403–648.Google Scholar
Gliiot, J.
1990. Methodology of the last climatic cycle reconstruction in France from pollen data, Palaeogeography, Palaeoclimatology, Palaeoecology
80: 44–69.Google Scholar
Guiot, J., Pons, A., DeBeaulieu, J.-L. & Reille, M.
1989. A 140,000-year continental climate reconstruction from two European pollen records, Nature
338: 309–13.Google Scholar
Kozlowski, J.K.
1996. Cultural context of the last Neanriertals and early modern humans in central-eastern Europe, Xiii International Congress: 205—18.Google Scholar
Kuhn, S.L.
1995. Mousterian Lithic Technology: An Ecological Perspective. Princeton NJ: Princeton University Press.Google Scholar
Laj, C, Mazaud, A. & Duclessy, J.C.
1996. Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr, Geophysical Research Letters
23: 20458.Google Scholar
Lambeck, K.
1995. Late Pleistocene and Holocene sea-lcvel change in Greece and southern Turkey: A separation of eustatic, isostatic and tectonic contributions, Geophysical Journal International
106: 1022–44.Google Scholar
Lang, A.
1996. Die Infrarot-stimulierte Lumineszenz als Datierungsmethode für Holozäne Lösderivate: ein Beitrag zur Ghronometrie kolluvialer. alluvialer und limnischer Sedimente in Siidwestdeutschland, Heidelberger Geo-Graphische Arbeiten
103: 1–171.Google Scholar
Lang, A. & wagner, G.
1997. Infrared stimulated luminescence dating of Holocene colluvial sediments using the 410 nm emission, Quaternary Science Reviews
16: 393–6.Google Scholar
Martinson, D., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr, & Shackleton, N.J.
1987. Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0-300,000-year chronostratigraphy, Quaternary Research
27: 1–29.Google Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. & Trig, E.
1991. Geomagnetic field control of 14C production over the last 80 ky; implication for the radiocarbon time scale, Geophysical Research Letters
18: 1885–8.Google Scholar
Mcmanus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S.,Labeyrie, L. & HiGGINS, S.
1994. High-resolution climate records from the North Atlantic during the last interglacial, Nature
371: 326–9.Google Scholar
Meese, D.A., Cow, A.J., Grootes, P., Mayewski, PA., Ram, M., Stuiver, M., Taylor, K.C., Waddington, E.D. & ZlELlNSKl, G.A.
1994. The accumulation record from the GISP2 ice core as an indicator of climatic change throughout the Holocene, Science
266: 1680–82.Google Scholar
Mellars, P.A.
1996a. The Neanderthal Legacy: An Archaeological Perspective From Western Europe. Princeton (NJ): Princeton University Press.Google Scholar
Mellars, P.A.
1996b. Models for the dispersion of anatomically modern populations across Europe: Ttheoretical and archaeological perspectives, Xiii International Congress: 225–36.Google Scholar
Mergiek, N. & Valladas, H.
1993. Contribution des méthodes de datation par le carbone 14 et la thermoluminescence a la chronologie de la transition du Paléolithique moyen au Paléolithique supérieur, in Valdés, V.Cabrera (ed.), El Origen Del Hombre Moderno En El Suroeste De Europa: 47–60. Madrid: U.N.E.Google Scholar
Mlskovsky, J.-C. (ed.). 1992. Les applications de la géologie a la reconnaissance de l’environnement de l’homme fossile, Mémoires de la Société Géologique de France, nouvello série, nr. 160.Google Scholar
Peteet, D.M. (ed.) 1996. Global Younger Dryas 2, Quaternary Science Reviews
14: 811–958.Google Scholar
Ponel, P.
1995. Rissian, Eemian and Würmian coleoptera assemblages from the Grande Pile (Vosges, France), Palaeogeography, Palaeoclimatology, Palaeoecology
114: 1–41.Google Scholar
RlCK, J.W.
1987. Dates as data: an examination of the Peruvian preceramic radiocarbon record, American Antiquity
52: 55–73.Google Scholar
Roebroeks, W., Conard, N.J. & Kolfsghoten, T.Van
1992. Dense forests, cold steppes and the Palaeolithic settlement of northern Europe, Current Anthropology
33: 551—86.Google Scholar
Schneider, D.A.
1993. An estimate of late Pleistocene geomagnetic intensity variation from Sulu Sea sediments, Earth And Planetary Science Letters
120: 301–10.Google Scholar
Stiner, M.C.
1994. Honor Among Thieves — A Zooarchaeological Study Of Neandertal Sociology. Princeton (NJ): Princeton University Press.Google Scholar
Stuiver, M. & Reimer, P.J.
1993. Extended 14C data base and revised CALIB 3.0 14C age calibration, Radiocarbon
35: 215–30.Google Scholar
Thouveny, N., Greer, K.M. & Williamson, D.
1993. Geomagnetic moment variations in the last 70,000 years; impact on the production of cosmogenic isotopes, Global And Planetary Change
7: 157–172.Google Scholar
Tric, E., Valet, J.P., Tucholka, P., Labeyrie, L., Guighard, f., Taiixe, I. & fontugne, M.
1992. Palaeointensity of the geomagnetic field during the last 80,000 years, Journal Of Geophysical Research
97: 9337–51.Google Scholar
Troelstra, S.R., Hinte, I.E.Van & Ganssen, G.M. (ed.). 1995. The Younger Dryas. Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen. Verhandeling van de Afdeling Natuurkunde
44.Google Scholar
Tushingham, A.M. & Peltier, W.R.
1993. Implications of the radiocarbon timescale for ice-sheet chronology and sea-level change, Quaternary Research
39: 125—9.Google Scholar
Van Andel, H. T., 1989a. Late Quaternary sea-level changes and archaeology, Antiquity
63: 733–45.Google Scholar
Van Andel, H. T., 1989b. Late Pleistocene changing sealevel and the human exploitation of the shore and shelf of southern South Africa, Journal of Field Archaeology
16: 133–55.Google Scholar
Van Andel, H. T. & Tzedakis, P.C. In press. Priority and opportunity: reconstructing the European Middle Palaeolithic climate and landscape, in Bailey, J. (ed.), Science In Archaeology: An Agenda For The Future. London: English Heritage.Google Scholar
Voelker, A.H., Santhein, M., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J. & Schleicher, M. In press. Correlation of marine 14C ages from the Nordic Seas with GISP2 Isotope record: implications for radiocarbon calibration beyond 25 kyr, Radiocarbon.Google Scholar
Wintle, A.G.
1996. Archaeologically-relevant dating techniques for the next century: small, hot and identified by acronyms, Journal Of Archaeological Sciences
23: 123–38.CrossRefGoogle Scholar
XIII International Congress Of Prehistoric And Protohistoric Sciences, Forli, Italy, Colloquia
5. Forlí: ABACO Edizione.Google Scholar
Yamazaki, T. & Yoka, N.
1994. Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific, Earth And Planetary Science Letters
128: 527–44.Google Scholar
- 35
- Cited by