Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T04:03:23.619Z Has data issue: false hasContentIssue false

Constraining the age of the Côa valley (Portugal) engravings with radiocarbon dating

Published online by Cambridge University Press:  02 January 2015

Ronald I. Dorn*
Affiliation:
Geography Department, Arizona State University, Tempe AZ 85287-0104, USA

Extract

Radiocarbon ages for the Côa petroglyphs are very similar to those obtained by Watchman (1995). Fundamental problems in the use of radiocarbon dating at Côa include evidence for the addition of younger carbon in an open system, and evidence of contamination from older sources of carbon. Radiocarbon measurements, therefore, cannot be used to decide whether the engravcings are or are not of Palaeolithic age.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, J. & Lequarre, A.. 1978. Essai de datation des formes d'érosion dans les chutes et les rapides du Shaba, Geo-Eco-Trop 2: 279–86.Google Scholar
Bahn, E.G. 1995a. Cave art without the caves, Antiquity 69: 231–7.Google Scholar
Bahn, E.G. 1995b. Outdoor creations of the Ice Age, Archaeology 48(4): 37.Google Scholar
Bednarik, R.G. 1992. A new method to date petroglyphs, Archaeometry 34: 279–91.CrossRefGoogle Scholar
Bahn, E.G. 1993. Geoarchaeological dating of petroglyphs at Lake Onega, Russia, Geoarchaeology 8: 443–63.Google Scholar
Bahn, E.G. 1995a. Goa Valley Portugal: dating the Coa petroglyphs, Victorian Anthropological and Archaeological Society Bulletin 1995(4): 58.Google Scholar
Bahn, E.G. 1995b. The age of the Côa valley petroglyphs in Portugal, Rock Art Research 12(2): 86103.Google Scholar
Bahn, E.G. 1995c. The Côa petroglyphs: an obituary to the stylistic dating of Palaeolithic rock-art, Antiquity 69: 877–83.Google Scholar
Bahn, E.G. 1995d. More news from Hell's Canyon, Portugal, AURA Newsletter 12(1): 78.Google Scholar
Bonani, G., Friedmann, E.I., Ocampo-Friedmann, R., McKay, C.P. & Woelfli, W.. 1988. Preliminary report on radiocarbon dating of cryptoendolithic microorganisms, Polarforschung 58: 199200.Google Scholar
Chaffee, S.D., Loendorf, L.L., Hyman, M. & Rowe, M.W.. 1994. A dated pictograph in the Pryor Mountains, Montana, Plains Anthropologist 39: 195201.CrossRefGoogle Scholar
Chapelle, F.H. & Bradley, P.M.. 1996. Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments, Geology 24: 925–8.2.3.CO;2>CrossRefGoogle Scholar
Chippindale, C. 1995. Editorial, Antiquity 69: 863–70.CrossRefGoogle Scholar
Chitale, J.D. 1986. Study of petrography and internal structures in cal cretes of West Texas and New Mexico (Micro-textures, Caliche). Lubbock (TX): Geosciences Department, Texas Tech University.Google Scholar
Clottes, J., Lorelanciiet, M. & Beltrán, A.. 1995. Are the Foz Côa engravings actually Holocene?, International Newsletter on Rock Art 12: 1921.Google Scholar
Danin, A., Wieder, M. & Magaritz, M.. 1987. Rhizofossils and root grooves in the Judean Desert and their paleoenviron-mental significance, Israel Journal of Earth Sciences 36: 91–9.Google Scholar
Dorn, R.I. 1994. Dating petroglyphs with a 3-tier rock varnish approach, in Whitley, D.S. & Loendorf, L. (ed.), New light on old art: advances in hunterer-gatherer rock art research: 1236. Los Angeles (CA): UCLA Institute for Archaeology. Monograph Series 36.Google Scholar
Dorn, R.I., Clarkson, P.B., Nodbs, M.F., Loendorf, L.L. & Whitley, D.S.. 1992. New approach to the radiocarbon dating of rock varnish, with examples from drylands, Annals of the Association of American Geographers 82: 136–51.Google Scholar
Dove, P.M. 1995. Kinetic and thermodynamic controls on silica reactivity in weathering environments, in White, A.F. & Brantley, S.L. (ed.), Chemical weathering rates of silicate minerals: 235–90. Washington (DC): Mineralogical Society of America.Google Scholar
Farr, T. & Adams, J.B.. 1984. Rock coatings in Hawaii, Geological Society of America Bulletin 95: 1077–83.Google Scholar
Fisk, E.P. 1971. Desert glaze, Journal Sedimentary Petrology 41: 1136–7.Google Scholar
Fredkickson, J.K. & Onstott, T.C.. Microbes deep inside the earth, Scientific American 275 (4): 6873.Google Scholar
Friedmann, E.I. & Weed, R.. 1987. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert, Science 236: 703–5.Google Scholar
Fyfe, W. S. 1996. The biosphere is going deep, Nature 273: 448.Google Scholar
Gibson, A.S. & Lafemina, J.P.. 1996. Structure of mineral surfaces, in Brady, P.V. (ed.), Physics and chemistry of mineral surfaces: 162. Boca Raton (FL): CRC Press.Google Scholar
Hochella, M.F. Jr & Banfield, J.F. 1995. Chemical weathering of silicates in nature: a microscopic perspective with theoretical considerations, in White, A.F. & Brantley, S.L. (ed.), Chemical weathering rates of silicate minerals,: 353406. Washington (DC): Mineralogical Society of America.CrossRefGoogle Scholar
Jorge, V. O. (ed.) 1995. Dossier Côa. Porto: Sociedade Portuguesa de Antropologia e Etnologia.Google Scholar
Krumbein, W. E. & Dyer, B.D.. 1985. This planet is alive - weathering and biology, a multi-faceted problem, in Drever, J.I. (ed.), The chemistry of weathering: 143–60. Dordrecht: D. Reidel.Google Scholar
Loendorf, L. 1995. Ice age engravings in danger, La Pintura 21(3): 1213.Google Scholar
Mahaney, W.C. 1996. Scaiming electron microscopy of quartz sand from the north-central Sanaran desert of Algeria, Zeitschrift für Geomorphologie Supplement Band 103:179–92.Google Scholar
Mckay, C. P., Long, A. & Friedmann, E. I.. 1986. Radiocarbon dating of open systems with bomb effects, Journal Geophysical Research 91 (B3): 3836–40.Google Scholar
Nobbs, M. & Dorn, R. I.. 1993. New surface exposure ages for petroglyphs from the Olary Province, South Australia, Archaeology in Oceania 28: 1839.Google Scholar
Phillips, F. M., Flinsch, M., Elmore, D. & Sharma, P.. 1997. Maximum ages of the Côa valley (Portugal) engravings measured with 36C1, Antiquity 71: 100104.Google Scholar
Pope, G.A. 1995a. Newly discovered submicron-scale weathering in quartz: geographical implications, Professional Geographer 47: 375–87.CrossRefGoogle Scholar
Pope, G.A. 1995b. Internal weathering in quartz grains, Physical Geography 16: 315–38.Google Scholar
Robinson, D.A. & Williams, R.B.G.. 1987. Surface crusting of sandstones in southern England and northern France, in Gardiner, V. (ed.), Internationalgeomorhpology 1986 Part II: 623–35. London: Wiley.Google Scholar
Robinson, D.A. & Williams, R.B.G.. 1992. Sandstone weathering in the High Atlas, Morocco, Zeitschrift für Geomorphologie 36: 413–29.CrossRefGoogle Scholar
Salema, I. 1995. Alan Watchman ao PUBLICO: um paleolítica ‘absurdo’, Público 8 July (Lisbon): 25.Google Scholar
Soleilhavoup, F. 1992. Scientifiques et touristes dans les sites d'art rupestre de plein air: des règles à appliquer; une déontologie à fixer, Bolletino del Centro Studi e Museo d'Arte Preistorica di Pinerolo, Italia 7-8: 8197.Google Scholar
Timofeyev, G.I., Mineyeva, I.D. & Grushevskiy, V.P.. 1980. Use of EPR for analyzing insoluable organic matter of rocks, International Geology Review 22 (3): 369–72.Google Scholar
Urzì, C., Criseo, G., Krumbein, W.E., Wollenzien, U. & Gorbushina, A.A.. 1993. Are colour changes of rocks caused by climate, pollution, biological growth, or by interactions of the three?, in Thiel, M.-J. (ed.), Conservation of stone and other materials: 279–86. London: E. & F.N. Spon.Google Scholar
Vues, H. 1995. Ecological perspectives on rock surface weathering: towards a conceptual model, Geomorphoìogy 13:2135.Google Scholar
Wang, Y. & Amundson, R.. 1996. Radiocarbon dating of soil organic matter, Quaternary Research 45: 282–8.Google Scholar
Watchman, A. 1992. Potential methods for dating rock paintings, American Indian Rock Art 18: 4351.Google Scholar
Watchman, A. 1994. Evidence of paleoenvironments in rock surface accretions, Program Abstracts, 1994 International Rock Art Congress, Flagstaff: 33–4.Google Scholar
Watchman, A. 1995. Recent petroglyphs, Foz Côa, Portugal, Rock Art Research 12(2): 104–8.Google Scholar
Watchman, A. 1996. A review of the theory and assumptions in the AMS dating of the Foz Côa petroglyphs, Portugal, Rock Art Research 13(1): 2130.Google Scholar
Weed, R. & Ackert, R.J.. 1986. Chemical weathering of Beacon Supergroup sandstones and implications for Antarctic glacial chronology. South Africa Journal of Science 82: 513–16.Google Scholar
Weed, R. & Norton, S.A.. 1991. Siliceous crusts, quartz rinds and biotic weathering.of sandstones in the cold desert of Antarctica, in Berthelin, J. (ed.), Diversity of environmental biogeochemistry: 327–39. Amsterdam: Elsevier. Developments in Geochemistry 6.CrossRefGoogle Scholar
Zllhão, J. 1995a. The age of the Côa valley (Portugal) rock-art: validation of archaeological dating to the Palaeolithic and refutation of ‘scientific’ dating to historic or proto-his-toric times, Antiquity 69: 883901.Google Scholar
Zllhão, J. 1995b. Foz Coa darn canceled. New Archaeological Park Planned, La Pintura 22 (2): 12.Google Scholar
Zllhão, J. 1995c. The stylistically Paleolithic petroglyphs of the Côa Valley (Portugal) are of Paleolithic age: a refutation of their ‘direct dating’ to recent times, Trabalhos de Antropologia e Etnologia 35(4): 119–65.Google Scholar
Züchner, C. 1995. Some comments on the rock art of Foz Côa (Portugal), International Newsletter on Rock Art 12:1819.Google Scholar