Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T16:25:51.714Z Has data issue: false hasContentIssue false

Approximate calendar date for the first human settlement of Cyprus?

Published online by Cambridge University Press:  02 January 2015

Sturt W. Manning*
Affiliation:
Jesus College, Cambridge CB5, 8BL, UK

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Antiquity Publications Ltd 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The radiocarbon determinations from the archaeological deposits at Akrotiri Aetokremnos, (Simmons’ paper above, pages 857–69) set a human presence on Cyprus back beyond the limit of the standard radiocarbon calibration. New approaches nevertheless make possible an approximate calibration of the date of settlement into real calendar years.

References

Acra, M., Martini, F., Pitzalis, G., Tuveri, C. & Ulzega, A. 1982. Paleolitica dell’Anglona (Sardegna Settentrionale). Richerche 1979–1980. Sassari: Dessì. Quaderni 12.Google Scholar
Aitchison, T., Ottaway, B. & Al-Ruzaiza, A.S. 1991. Summarizing a group of 14C dates on the historical time scale: with a worked example from the Late Neolithic of Bavaria, Antiquity 65: 108–16.CrossRefGoogle Scholar
Aurenche, O., Evin, J. & Hours, F. (ed.). 1987. Chronologies du Proche Orient/Chronologies in the Near East: relative chronologies and absolute chronology 16,000–4000 BP. CNRS International Symposium, Lyon (France) 24–28 November 1986. Oxford: British Archaeological Reports. International series 379.Google Scholar
Barbetti, M. 1980. Geomagnetic strength over the last 50,000 years and changes in atmospheric 14C concentration: emerging trends, Radiocarbon 22: 192–9.Google Scholar
Barbetti, M. & Flude, K. 1979. Geomagnetic variation during the late Pleistocene period and changes in the radiocarbon time scale, Nature 279: 202–5.Google Scholar
Bard, E., Hamelin, B., Arnold, M. & Buigues, D. 1991. 230Th/234U and 14C ages obtained by mass spectrometry on corals from Mururoa Atoll, French Polynesia, Radiocarbon 33: 173.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G. & Zindler, A. 1990a. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals, Nature 345: 405–10.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., Zindler, A., Mathieu, G. & Arnold, M. 1990b. U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years BP, Nuclear Instruments and Methods in Physics Research B 52: 461–8.Google Scholar
Becker, B. & Kromer, B. 1986. Extension of the Holocene dendrochronology by preboreal pine series, 8800 to 10,100 BP, Radiocarbon 28: 961–7.CrossRefGoogle Scholar
Becker, B. & Kromer, B. 1991. Dendrochronology and radiocarbon calibration of the early Holocene, in Barton, R.N.E., Roberts, A.J. & Roe, D.A. (ed.), The Late Glacial in north-west Europe: human adaptation and environmental change at the end of the Pleistocene: 22–4. London: Council for British Archaeology. Research Report 77.Google Scholar
Becker, B., Kromer, B. & Trimborn, P. 1991a. Absolute minimum age of the Late Glacial-Holocene Transition by radiocarbon calibration and stable isotope analyses of a 1477-year German pine dendrochronology, Radiocarbon 33: 174–5.Google Scholar
Becker, B., Kromer, B. & Trimborn, P. 1991b. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary, Nature 353: 647–9.CrossRefGoogle Scholar
Bell, W.T. 1991. Thermoluminescence dates for the Lake Mungo aboriginal fireplaces and the implications for radiocarbon dating, Archaeometry 33: 4350.Google Scholar
Burleigh, R. & Clutton-Brock, I. 1980. The survival of Myotragus balearicus Bate, 1909, into the Neolithic on Mallorca, Journal of Archaeological Science 7: 385–8.CrossRefGoogle Scholar
Cato, I. 1985. The definitive connection of the Swedish geochronological time scale with the present, and the new date of the zero year in Döviken, northern Sweden, Boreas 14: 117–22.Google Scholar
Cherry, J.F. 1981. Pattern and process in the earliest colonization of the Mediterranean islands, Proceedings of the Prehistoric Society 47: 4168.Google Scholar
Cherry, J.F. 1990. The first colonization of the Mediterranean islands: a review of recent research, Journal of Mediterranean Archaeology 3: 145221.Google Scholar
Hammer, C.U., Clausen, H.B. & Tauber, H. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale, Radiocarbon 28: 284–91.Google Scholar
Held, S. 1989a. Colonization cycles on Cyprus 1: the biogeographic and paleontological foundations of early prehistoric settlement, Report of the Department of Antiquities, Cyprus, 1989: 728.Google Scholar
Held, S. 1989b. Early prehistoric island archaeology in Cyprus: configurations of formative culture growth from the Pleistocene/Holocene boundary to the mid 3rd millennium BC. Ph.D dissertation, Institute of Archaeology, University of London.Google Scholar
Kromer, B. & Becker, B. 1987. Calibration of radiocarbon dates beyond 7200 BP, in Aurenche, et al. (ed.): 387–94.Google Scholar
Lotter, A.F. 1991. Absolute dating of the Late-Glacial period in Switzerland using annually laminated sediments, Quaternary Research 35: 321–30.Google Scholar
Manning, S.W. N.d. The absolute chronology of the Aegean Early Bronze Age : archaeology, history and radiocarbon. Sheffield: Sheffield Academic Press. Monograph in Mediterranean Archaeology 1.Google Scholar
Mellars, P. 1990. A major ‘plateau’ in the radiocarbon time-scale at c. 9650 BP: the evidence from Star Carr (North Yorkshire), Antiquity 64: 836–41.Google Scholar
Ottaway, B.S. 1973. Dispersion diagrams: a new approach to the display of 14C dates, Archaeometry 15: 512.Google Scholar
Robinson, S.W. 1991. Carbonate contamination revisited, Radiocarbon 33: 237–8.Google Scholar
Simmons, A.H. 1988a. Extinct pygmy hippopotamus and early man in Cyprus, Nature 333: 554–7.Google Scholar
Simmons, A.H. 1988b. Test excavations at Akrotiri-Aetokremnos (Site E), an early prehistoric occupation in Cyprus: preliminary report, Report of the Department of Antiquities, Cyprus, 1988: 1524.Google Scholar
Simmons, A.H. 1989. Preliminary report on the 1988 test excavations at Akrotiri-Aetokremnos, Cyprus , Report of the Department of Antiquities, Cyprus, 1989: 15.Google Scholar
Simmons, A.H. 1991. Humans, island colonization and Pleistocene extinctions in the Mediterranean: the view from Akrotiri Aetokremnos, Cyprus, Antiquity 64: 857–69.Google Scholar
Simmons, A.H., Held, S.O. & Reese, D.S. N.d. Extinct pygmy hippopotamus, early man, and the initial human occupation of Cyprus, in Sondaar, P.Y. & Sanges, M. (ed.), Early man in island environments: Proceedings of the Oliéna (Sardinia) Colloquium, 25 September-2 October 1988. Sassari: Industria Grafica Stampacolor.Google Scholar
Sondaar, O., Sanges, M., Kotsakis, T. & De Boer, P. 1986. The Pleistocene deer hunter of Sardinia, Geobios 19: 1725.Google Scholar
Stanley-Price, N. 1977a. Colonization and continuity in the early prehistory of Cyprus, World Archaeology 9: 2741.Google Scholar
Stanley-Price, N. 1977b. Khirokitia and the initial settlement of Cyprus, Levant 9: 6689.Google Scholar
Street, M. 1986. Un Pompei de l’âge glaciaire, La Recherche 17(176): 534–5.Google Scholar
Strâmberg, B. 1985. Revision of the late glacial Swedish varve chronology, Boreas 14: 101–5.Google Scholar
Strâmberg, B. 1991. A revised Swedish clay varve chronology: present state of the art, Radiocarbon 33: 247.Google Scholar
Stuiver, M. 1978. Radiocarbon timescale tested against magnetic and other dating methods, Nature 273: 271–4.Google Scholar
Stuiver, M. 1989. Dating proxy data, in Berger, A., Schneider, A. & Duplessey, J.C. (ed.), Climate and geo-sciences: a challenge for science and society in the 21st century: 3945. Dordrecht: Kluwer Academic Publishers. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences 285.CrossRefGoogle Scholar
Stuiver, M. 1990. Timescales and telltale corals, Nature 345: 387–8.Google Scholar
Stuiver, M., Braziunas, T.F., Becker, B. & Kromer, B. 1991. Climatic, solar, oceanic, and geomagnetic influences on Late Glacial and Holocene atmospheric 14C/12C change, Quaternary Research 35: 124.Google Scholar
Stuiver, M., Kromer, B., Becker, B. & Ferguson, C.W. 1986a. Radiocarbon age calibration back to 13,300 years BP, Radiocarbon 28: 969–79.Google Scholar
Stuiver, M., Pearson, G.W. & Braziunas, T.F. 1986b. Radiocarbon age calibration of marine samples back to 9000 cal yr BP, Radiocarbon 28: 9801021.Google Scholar
Stuiver, M. &. Reimer, P.J. 1986. A computer program for radiocarbon age calibration, Radiocarbon 28: 1022–30.Google Scholar
Vogel, J.C. 1983. 14C variations during the upper Pleistocene, Radiocarbon 25: 213–18.CrossRefGoogle Scholar
Vogel, J.C. 1987. Calibration of radiocarbon dates beyond 10.000 BP, in Aurenche, et al. (ed.): 319–22.Google Scholar
Ward, G.K. & Wilson, S.R. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique, Archaeometry 20: 1931.Google Scholar
Weninger, B. 1986. High-precision calibration of archaeological radiocarbon dates, in Acta Inter-disciplinaria Archaeologica, Tomus 4: 1153. Nitra: AIA.Google Scholar