Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T01:45:34.211Z Has data issue: false hasContentIssue false

Airborne lidar and historic environment records

Published online by Cambridge University Press:  02 January 2015

Keith Challis*
Affiliation:
IBM Visual and Spatial Technology Centre, Birmingham Archaeology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK (Email: [email protected])
Ziga Kokalj
Affiliation:
Institute of Anthropological and Spatial Studies, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, SI–1000 Ljubljana, Slovenia
Mark Kincey
Affiliation:
IBM Visual and Spatial Technology Centre, Birmingham Archaeology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK (Email: [email protected])
Derek Moscrop
Affiliation:
IBM Visual and Spatial Technology Centre, Birmingham Archaeology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK (Email: [email protected])
Andy J. Howard
Affiliation:
Institute of Archaeology and Antiquity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract

The authors assess the potential contribution of lidar surveys to national inventories of archaeological resources (‘Historic Environment Records’), and compare the relative costs and sensitivity of lidar and aerial photography.

Type
Method
Copyright
Copyright © Antiquity Publications Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, I. 2003. Aerial remote-sensing techniques used in the management of archaeological monuments on the British Army's Salisbury Plain training area, Wiltshire, UK. Archaeological Prospection 10: 8390.CrossRefGoogle Scholar
Bewley, R. H., Crutchley, S. P. & Shell, C. A.. 2005. New light on an ancient landscape: lidar survey in the Stonehenge World Heritage site. Antiquity 79: 636–67.CrossRefGoogle Scholar
Bewley, R. 2003. Aerial survey for archaeology. The Photogrammetric Record 18, 104: 273–92CrossRefGoogle Scholar
Bofinger, J., Kurz, S. & Schmidt, S.. 2006. Ancient maps – modern data sets: different investigative techniques in the landscapes of the Early Iron Age princely hill fort Heuneburg, Baden-Württemberg, in Campana, S. & Forte, M. (ed.) From space to place: Proceedings of the 2nd International Workshop on remote sensing in archaeology, CNR, Rome, Italy, Dec 4-7, 2006 (British Archaeological Reports International Series 1568): 8792. Oxford: Archaeopress.Google Scholar
Brown, K., Duncan, A., O'dwyer, D., Davison, B., Hogarth, P., Butler, D. & Sampson, E.. 2003. Integrated airborne data collection by the Environment Agency, in Aplin, P. & Mather, P. M. (ed.) Proceedings of the Remote Sensing and Photogrammetry Society 2003: Scales and dynamics in observing the environment, Nottingham, 10-12 September 2003. Nottingham: Remote Sensing and Photogrammetry Society.Google Scholar
Brunning, R. & Farr-Cox, F.. 2005. The River Siger rediscovered: lidar survey and relict landscape on the Somerset Claylands. Archaeology and the Severn Estuary 16: 715.Google Scholar
Carey, C., Brown, T., Challis, K., Howard, A. J. & Cooper, L.. 2006. Predictive modelling of multi-period geoarchaeological resources at a river confluence: a case study from the Trent-Soar, UK. Archaeological Prospection 13(4): 241–50.CrossRefGoogle Scholar
Challis, K. 2005. Airborne LiDAR: a tool for geoarchaeological prospection in riverine landscapes, in Stoepker, H. (ed.) Archaeological heritage management in riverine landscapes (Rapportages Archeologische Monumentenzorg 126): 1124. Amersfoort: Rijksdienst voor het Oudheidkundig Bodemonderzoek.Google Scholar
Challis, K. 2006. Airborne laser altimetry in alluviated landscapes. Archaeological Prospection 13(2): 103–27.CrossRefGoogle Scholar
Challis, K. & Howard, A. J.. 2006. A review of trends within archaeological remote sensing in alluvial environments. Archaeological Prospection 13(4): 231–40.CrossRefGoogle Scholar
Challis, K., Howard, A. J., Smith, S. N., Gearey, B. R., Moscrop, D., Carey, C. J. & Thompson, A.. 2006. Using airborne lidar intensity to predict the organic preservation of waterlogged deposits, in Campana, S. & Forte, M. (ed.) From space to place: Proceedings of the 2nd International Workshop on remote sensing in archaeology, CNR, Rome, Italy, Dec 4-7, 2006 (British Archaeological Reports International Series 1568): 9398. Oxford: Archaeopress.Google Scholar
Chapman, H. P. 2002. Global warming: the implications for sustainable archaeological resource management. Conservation and Management of Archaeological Sites 5: 241–5.CrossRefGoogle Scholar
Crow, P., Benham, S., Devereux, B. J. & Amable, G. S.. 2007. Woodland vegetation and its implications for archaeological survey using Lidar. Forestry 80(3): 241–52.CrossRefGoogle Scholar
Crutchley, S. 2006. Light detection and ranging (lidar) in the Witham Valley, Lincolnshire: an assessment of new remote sensing techniques. Archaeological Prospection 13(4): 251–7.CrossRefGoogle Scholar
Devereux, B. J., Amable, G. S., Crow, P. & Cliff, A. D.. 2005. The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 79: 648–60.CrossRefGoogle Scholar
Doneus, M. & Briese, C.. 2006. Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laser-scanning, in Ioannides, M., Arnold, D., Niccolucci, F. & Mania, K. (ed.) VAST 2006: Proceedings of the 7th International Symposium on virtual reality, archaeology and cultural heritage, 30 Oct-4 Nov 2006, Nicosia, Cyprus: 155–62. Aire-la-Ville: Eurographics Association.Google Scholar
Harmon, J.M, Leone, M. P., Prince, S. D. & Snyder, M.. 2006. LiDAR for archaeological landscape analysis: a case study of two eighteenth-century Maryland plantation sites. American Antiquity 71(4): 649–72.CrossRefGoogle Scholar
Hill, R. A. & Veitch, N.. 2002. Landscape visualisation: rendering a virtual reality simulation from airborne laser altimetry and multi-spectral scanning data. International Journal of Remote Sensing, 23: 3307–9.CrossRefGoogle Scholar
Holden, N., Horne, P. & Bewley, R. H.. 2002. High resolution digital airborne mapping and archaeology, in Bewley, R. & Raczkowski, W. (ed.) Aerial archaeology: developing future practice (NATO Science Series 1: Life and Behavioural Sciences, Volume 337): 173–80. Amsterdam: IOS Press & Tokyo: Ohmsha.Google Scholar
IPCC (Intergovernmental Panel on Climate Change) Metz, B.Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A. (ed.). 2007. Climate change 2007. Mitigation of climate change: contribution of Working Group III to the Fourth Assessment Report of the international Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Jones, A. F., Brewer, P. A., Johnstone, E. & Macklin, M. G.. 2007. High-resolution interpretative geomorphological mapping of river environments using airborne LiDAR data. Earth Surface Processes and Landforms 31: 1574–92.CrossRefGoogle Scholar
Petzold, B., Reiss, P. & Stüssel, W.. 1999. Laser scanning – surveying and mapping agencies are using a new technique for the derivation of digital terrain models. Journal of Photogrammetry & Remote Sensing 54(2-3): 95104.CrossRefGoogle Scholar
Powlesland, D., Lyall, J., Hopkinson, G., Donoghue, D., Beck, M., Harte, A. & Stott, D.. 2006. Beneath the sand – remote sensing, archaeology, aggregates and sustainability: a case study from Heslerton, the Vale of Pickering, North Yorkshire, UK. Archaeological Prospection 13(4): 291–9.CrossRefGoogle Scholar
Risbol, O., Gjertsen, A. Kristian & Skare, K.. 2006. Airborne laser scanning of cultural remains in forests: some preliminary results from a Norwegian project, in Campana, S. & Forte, M. (ed.) From space to place: proceedings of the 2nd international workshop on remote sensing in archaeology, CNR, Rome, Italy, Dec 4-7, 2006. (British Archaeological Reports International Series 1568): 107–12. Oxford: Archaeopress.Google Scholar
Sanchez, J. C., Sanabria, A. M. & Raber, B.. 2007. Mapping Colombia's coastline – Lidar helps preserve fragile marine ecosystems. Geoworld June 2007.Google Scholar
Sittler, B. & Schellberg, S.. 2006. The potential of lidar is assessing elements of cultural heritage hidden under forest canopies or overgrown vegetation: possibilities and limits in detecting microrelief structures for archaeological surveys, in Campana, S.C & Forte, M. (ed.) From space to place: Proceedings of the 2nd International Workshop on remote sensing in archaeology, CNR, Rome, Italy, Dec 4-7, 2006. (British Archaeological Reports International Series 1568): 117–22. Oxford: Archaeopress.Google Scholar