Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T00:16:19.388Z Has data issue: false hasContentIssue false

Rooting for pigfruit: pig feeding in Neolithic and Iron Age Britain compared

Published online by Cambridge University Press:  02 January 2015

Julie Hamilton
Affiliation:
Oxford University Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
Robert E.M. Hedges
Affiliation:
Oxford University Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
Mark Robinson
Affiliation:
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK

Abstract

‘They dream of the acorned swill of the world, the rooting for pigfruit…’ Dylan Thomas, Under Milk Wood.

Carbon and nitrogen isotopes show a marked change in the diet of British pigs between the Neolithic and the Iron Age. The authors neatly deduce that this was due to the loss of the Neolithic wildwood where pigs were wont to root for fungus amongst the rotting trees.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarella, U. & Payne, S.. 2005. Neolithic pigs from Durrington Walls, Wiltshire, England: a biometrical database. Journal of Archaeological Science 32: 589–99.CrossRefGoogle Scholar
Ambrose, S. & Norr, L.. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, in Lambert, J. & Grupe, G. (ed.) Prehistoric human bone - archaeology at the molecular level: 59129. Berlin: Springer.Google Scholar
Baubet, E., Ropert-Coudert, Y. & Brandt, S.. 2003. Seasonal and annual variations in earthworm consumption by wild boar (Sus scrofa scrofa L.). Wildlife Research 30: 179–86.CrossRefGoogle Scholar
Benson, D. & Whittle, A. (ed.). 2006. Building memories: the Neolithic Cotswold long barrow at Ascott-under-Wychwood, Oxfordshire. Oxford: Oxbow.CrossRefGoogle Scholar
Biddick, K. 1989. The other economy: pastoral husbandry on a medieval estate. Berkeley (CA): University of California Press.Google Scholar
Bieber, C. & Ruf, T.. 2005. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. Journal of Applied Ecology 42: 1203–13.CrossRefGoogle Scholar
Blair, R. M., Alcaniz, R. & Morris, H. F. Jr. 1984. Yield, nutrient composition and ruminant digestibility of fleshy fungi in southern forests. The Journal of Wildlife Management 48: 1344–52.CrossRefGoogle Scholar
Bocherens, H. & Drucker, D.. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13: 4653.CrossRefGoogle Scholar
Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I.. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34: 335–43.CrossRefGoogle Scholar
Bostrom, B., Comstedt, D. & Ekblad, A.. 2008. Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi? New Phytologist 177: 1012–19.CrossRefGoogle ScholarPubMed
Brück, J. 2000. Settlement, landscape and social identity: the Early-Middle Bronze Age transition in Wessex, Sussex and the Thames Valley. Oxford Journal of Archaeology 19: 273300.CrossRefGoogle Scholar
Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., Sealy, J., Grant, R. & Fourie, N.. 2007. Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology 273: 21–9.CrossRefGoogle Scholar
Collins, E.T.J., Piggott, S. & Thirsk, J. (ed.). 1981. Agrarian history of England and Wales. Cambridge: Cambridge University Press.Google Scholar
Commisso, R. G. & Nelson, D. E.. 2006. Modern plant δ15N values reflect ancient human activity. Journal of Archaeological Science 33: 1167–76.CrossRefGoogle Scholar
Commisso, R. G. & Nelson, D. E. 2007. Patterns of plant δ15N values on a Greenland Norse farm. Journal of Archaeological Science 34: 440–50.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Mukherjee, A. J., Dudd, S. N., Straker, V., Payne, S. & Evershed, R. P.. 2005. Dairying in antiquity III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science 32: 523–46.CrossRefGoogle Scholar
Curry, J. P. & Schmidt, O.. 2007. The feeding ecology of earthworms - a review. Pedobiologia 50: 463–77.CrossRefGoogle Scholar
Edwards, C. J.et al. 2007. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society B: Biological Sciences 274: 1377–85.CrossRefGoogle Scholar
Grigson, C. 1982. Porridge and pannage: pig husbandry in Neolithic England, in Limbrey, S. & Bell, M. (ed.) Archaeological aspects of woodland ecology (British Archaeological Reports International Series 146): 297314. Oxford: British Archaeological Reports.Google Scholar
Guo, L.-Q., Lin, J.-Y. & Lin, J.-F.. 2007. Non-volatile components of several novel species of edible fungi in China. Food Chemistry 100: 643–49.CrossRefGoogle Scholar
Hamilton, J. & Hedges, R. E. M.. In press. Carbon and nitrogen stable isotope values of animals and humans from causewayed enclosures, in Whittle, A., Bayliss, A. & Healy, F. (ed.) Gathering time: dating the Early Neolithic enclosures of southern Britain and Ireland. Oxford: Oxbow.Google Scholar
Harki, E., Bouya, D. & Dargent, R.. 2006. Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chemistry 99: 394400.CrossRefGoogle Scholar
Hart, S. C., Gehring, C. A., Selmants, P. C., Deckert, R. J.. 2006. Carbon and nitrogen elemental and isotopic patterns in macrofungal sporocarps and trees in semiarid forests of the south-western USA. Functional Ecology 20: 4251.CrossRefGoogle Scholar
Hedges, R. E. M. 2003. On bone collagen-apatitecarbonate isotopic relationships. International Journal of Osteoarchaeology 13: 6679.CrossRefGoogle Scholar
Hedges, R.E.M., Thompson, J. M. A. & Hull, B. D.. 2005. Stable isotope variation in wool as a means to establish Turkish carpet provenance. Rapid Communications in Mass Spectrometry 19: 3187–91.CrossRefGoogle ScholarPubMed
Hedges, R. E. M., Stevens, R. E. & Pearson, J. A.. 2007. Carbon and nitrogen stable isotope compositions of animal and human bone from Ascott-under-Wychwood long barrow, in Benson, D. & Whittle, A. (ed.) Building memories: the Neolithic Cotswold long barrow at Ascott-under-Wychwood, Oxfordshire: 255–62. Oxford: Oxbow.Google Scholar
Hedges, R.M.E., Saville, A. & O'Connell, T.. 2008. Characterizing the diet of individuals at the Neolithic chambered tomb of Hazleton North, Gloucestershire, England, using stable isotopic analysis. Archaeometry 50: 114–28.CrossRefGoogle Scholar
Henn, M. R. & Chapela, I. H.. 2001. Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128: 480–7.CrossRefGoogle ScholarPubMed
Hobbie, E. A., Macko, S. A. & Shugart, H. H.. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118: 353–60.CrossRefGoogle ScholarPubMed
Hodge, S. J. & Peterken, G. F.. 1998. Deadwood in British forests: priorities and a strategy. Forestry 71: 99112.CrossRefGoogle Scholar
Hogberg, P., Plamboeck, A. H., Taylor, A. F. S. & Fransson, P. M. A.. 1999. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences 96: 8534-9.CrossRefGoogle Scholar
Hohmann, U. & Huckschlag, D.. 2005. Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland- Palatinate: a stomach content analysis. European Journal of Wildlife Research 51: 263–70.CrossRefGoogle Scholar
Jay, M. 2008. Iron Age diet at Glastonbury Lake Village: the isotopic evidence for negligible aquatic resource consumption. Oxford Journal of Archaeology 27: 201–16.CrossRefGoogle Scholar
Jay, M. & Richards, M. P.. 2006. Diet in the Iron Age cemetery population at Wetwang Slack, East Yorkshire, UK: carbon and nitrogen stable isotope evidence. Journal of Archaeological Science 33: 653–62.CrossRefGoogle Scholar
Jay, M. & Richards, M. P. 2007. British Iron Age diet: stable isotopes and other evidence. Proceedings of the Prehistoric Society 73: 171–92.CrossRefGoogle Scholar
Jim, S., Jones, V., Ambrose, S. H. & Evershed, R. P.. 2007. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. British Journal of Nutrition 95: 1055–62.CrossRefGoogle Scholar
Kirby, K. J., Reid, C. M., Thomas, R. C. & Goldsmith, F. B.. 1998. Preliminary estimates of fallen dead wood and standing dead trees in managed and unmanaged forests in Britain. The Journal of Applied Ecology 35: 148–55.CrossRefGoogle Scholar
Kohzu, A., Yoshioka, T., Ando, T., Takahashi, M., Koba, K. & Wada, E.. 1999. Natural δ13C and δ15N abundance of field-collected fungi and their ecological implications. New Phytologist 144: 323–30.CrossRefGoogle Scholar
Larson, G.et al. 2007. Ancient DNA, pig domestication and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences 104: 1527681.CrossRefGoogle ScholarPubMed
Lynch, A. H., Hamilton, J. & Hedges, R. E. M.. 2008. Where the wild things are: aurochs and cattle in England. Antiquity 82: 1025–39.CrossRefGoogle Scholar
Mcilwee, A. P. & Johnson, C. N.. 1998. The contribution of fungus to the diets of three mycophagous marsupials in eucalyptus forests, revealed by stable isotope analysis. Functional Ecology 12: 223–31.CrossRefGoogle Scholar
Moffett, L., Robinson, M. A. & Straker, V.. 1989. Cereals, fruits and nuts: charred plant remains from Neolithic sites in England and Wales and the Neolithic economy, in Milles, A., Williams, D. G. & Gardener, N. (ed.) The beginnings of agriculture (British Archaeological Reports International Series 496): 243–61. Oxford: British Archaeological Reports.Google Scholar
Noe-Nygaard, N., Price, T. D. & Hede, S. U.. 2005. Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. Journal of Archaeological Science 32: 855–71.CrossRefGoogle Scholar
Rackham, O. 1986. The history of the countryside. London: J. M. Dent & Sons.Google Scholar
Richards, M. P., Schulting, R. J. & Hedges, R.E.M.. 2003. Sharp shift in diet at onset of Neolithic. Nature 425: 366.CrossRefGoogle ScholarPubMed
Robbins, C. T., Felicetti, L. A. & Sponheimer, M.. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144: 534–40.CrossRefGoogle ScholarPubMed
Robinson, M. A. 2000. Further considerations of Neolithic charred cereals, fruit and nuts, in Fairbairn, A. S. (ed.) Plants in Neolithic Britain and beyond: 8590. Oxford: Oxbow.CrossRefGoogle Scholar
Rowley-Conwy, P. 2004. How the West was lost: a reconsideration of agricultural origins in Britain, Ireland and southern Scandinavia. Current Anthropology 45: S83S113.CrossRefGoogle Scholar
Sage, R. F. & Pearcy, R. W.. 2000. The physiological ecology of C4 photosynthesis, in Leegood, R. C., Sharkey, T. D. & von Caemmerer, S. (ed.) Photosynthesis: physiology and metabolism: 497532. Dordrecht: Kluwer.CrossRefGoogle Scholar
Schley, L. & Roper, T. J.. 2003. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Review 33: 4356.CrossRefGoogle Scholar
Skewes, Ó., Rodriguez, R. & Jaksic, F. M.. 2007. Ecología trófica del jabalí europeo (Sus seroja) silvestre en Chile. Revista Chilena de Historia Natural 80: 295307.CrossRefGoogle Scholar
Sponheimer, M., Robinson, T., Ayliffe, L., Passey, B., Roeder, B., Shipley, L., Lopez, E., Cerling, T., Dearing, D. & Ehleringer, J.. 2003. An experimental study of carbon-isotope fractionation between diet, hair and feces of mammalian herbivores. Canadian Journal of Zoology 81: 871–6.CrossRefGoogle Scholar
Stevens, R., Lister, A. & Hedges, R.. 2006. Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149: 1221.CrossRefGoogle ScholarPubMed
Sumsion, L. & Pollock, M.. 2005. Woodland grazing toolkit. Argyll and Bute Local Biodiversity Partnership. Available at http://www.grazinganimalsproject.org.uk/books documents and reports.htmlGoogle Scholar
Sutoh, M., Koyama, T. & Yoneyama, T.. 1987. Variations in natural 15N abundances in the tissues and digesta of domestic animals. Radioisotopes 36: 74–7.CrossRefGoogle ScholarPubMed
Tieszen, L. & Fagre, T.. 1993. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues, in Lambert, J. & Grupe, G. (ed.) Prehistoric human bone - archaeology at the molecular level. Berlin: Springer.Google Scholar
Trudell, S. A., Rygiewicz, P. T. & Edmonds, R. L.. 2004. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytologist 164: 317–35.CrossRefGoogle Scholar
USDA. 2007. USDA National Nutrient Database for Standard Reference, Release 21 edition. US Department of Agriculture, Agricultural Research Service. Available at http://www.ars.usda.gov/nutrientdataGoogle Scholar
Yates, D.T. 1999. Bronze Age field systems in the Thames Valley. Oxford Journal of Archaeology 18: 157–70.CrossRefGoogle Scholar