Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:22:31.323Z Has data issue: false hasContentIssue false

Disease, CCR5-Δ32 and the European spread of agriculture? A hypothesis

Published online by Cambridge University Press:  22 February 2012

Ian Holtby
Affiliation:
1Departments of Anthropology and Archaeology, Durham University, Dawson Bldg, South Road, Durham DH1 3LE, UK (Email: [email protected]; [email protected]; [email protected])
Chris Scarre
Affiliation:
1Departments of Anthropology and Archaeology, Durham University, Dawson Bldg, South Road, Durham DH1 3LE, UK (Email: [email protected]; [email protected]; [email protected])
R. Alexander Bentley
Affiliation:
2Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, UK (Email: [email protected])
Peter Rowley-Conwy
Affiliation:
1Departments of Anthropology and Archaeology, Durham University, Dawson Bldg, South Road, Durham DH1 3LE, UK (Email: [email protected]; [email protected]; [email protected])

Extract

From its origins in the Starčcevo-Körös culture of the Hungarian Plain around 5700 BC the Neolithic archaeological assemblage of the Linearbandkeramik (LBK) spread within two centuries to reach Alsace and the middle Rhine by 5500 BC, though the rapidity of the spread makes it difficult to measure using available radiocarbon evidence (Dolukhanov et al. 2005). In this same time period, during the Terminal Mesolithic, c. 5800 to 5500 BC, there is evidence for forager-herder-horticulturists in Central andWestern Europe prior to the appearance of the LBK (Gronenborn 1999, 2009). The Cardial Neolithic complex spread round the shores of the northern Mediterranean from southern Italy to Portugal in the period 5700’5400 BC.

Type
Research article
Copyright
Copyright © Antiquity Publications Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armelagos, G. J. & Harper, K. N.. 2005. Genomics at the origins of agriculture. Evolutionary Anthropology 14: 68-77, 109121.CrossRefGoogle Scholar
Barnes, I. & Thomas, M. G.. 2006. Evaluating bacterial pathogen DNA preservation in museum osteological collections. Proceedings of the Royal Society B 273: 645–53.CrossRefGoogle ScholarPubMed
Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G.. 2010. Ancient urbanisation predicts resistance to tuberculosis. Evolution 65(3): 842–8.CrossRefGoogle Scholar
Biagi, P. & Spataro, M.. 2002. The Mesolithic/Neolithic transition in north eastern Italy and the Adriatic Basin. Saguntum Extra-5: 167–78.Google Scholar
Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G.. 2007. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Sciences USA 104: 3736–41.CrossRefGoogle ScholarPubMed
Cessford, C. 2005. Estimating the Neolithic population of çatalhöyük, in Hodder, I. (ed.) Inhabiting çatalhöyük: report from the 1995-99 seasons. Cambridge: McDonald Institute for Archaeological Research & British Institute for Archaeology at Ankara.Google Scholar
Dean, M., Carrington, M., Winkler, C., Huttley, A.G., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R. & O'Brien, S. J.. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273: 1856–62.CrossRefGoogle ScholarPubMed
Diamond, J. & Bellwood, P.. 2003. Farmers and their languages: the first expansions. Science 300: 597603.CrossRefGoogle ScholarPubMed
Dobyns, H. F. 1966. An appraisal of techniques with a new hemispheric estimate. Current Anthropology 7: 395416.CrossRefGoogle Scholar
Dolukhanov, P., Shukurov, A., Gronenborn, D., Sokoloff, D., Timofeev, V. & Zaitseva, G.. 2005. The chronology of Neolithic dispersal in Central and Eastern Europe. Journal of Archaeological Science 32: 1441–58.CrossRefGoogle Scholar
Forenbaher, S. & Miracle, P. T.. 2006. The spread of farming in the eastern Adriatic. Documenta Praehistorica 33: 89100.CrossRefGoogle Scholar
Galvani, A. P. & Slatkin, M.. 2003. Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proceedings of the National Academy of Sciences USA 100: 15276-9.CrossRefGoogle Scholar
Gluckman, P., Beedle, A. & Hanson, M.. 2009. Principles of evolutionary medicine. Oxford:Oxford University Press.Google Scholar
Gronenborn, D. 1999. A variation on a basic theme: the transition to farming in southern Central Europe. Journal of World Prehistory 2: 23210.Google Scholar
Gronenborn, D. 2009. Climate fluctuations and trajectories to complexity in the Neolithic: towards a theory. Documenta Praehistorica 36: 97110.CrossRefGoogle Scholar
Guilaine, J. & Manen, C.. 2007. From Mesolithic to Early Neolithic in the western Mediterranean, in Whittle, A. & Cummings, V. (ed.) Going over: the Mesolithic-Neolithic transition in north-west Europe (Proceedings of the British Academy): 2151. London: British Academy.Google Scholar
Itan, Y., Jones, B. L., Ingram, C.J.E., Swallow, D. M. & Thomas, M. G.. 2010. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evolutionary Biology 10: 36.CrossRefGoogle ScholarPubMed
Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B. H., Wolinsky, S. & Bhattacharya, T.. 2000. Timing the ancestor of the HIV-1 pandemic strains. Science 288: 1789–96.CrossRefGoogle ScholarPubMed
Lalani, A. S., Masters, J., Zeng, W., Barrett, J., Pannu, R. & Everett, H.. 1999. Use of chemokine receptors by poxviruses. Science 286: 1968–71.CrossRefGoogle ScholarPubMed
Libert, F., Cochaux, P., Beckman, G., Samson, M., Askenova, M., Cao, A., Czeizel, A., Claustre, M., De La Rua, C., Ferrari, M., Ferrec, C., Glover, G., Grinde, B., Güran, S., Kucinskas, V., Lavinha, J., Mercier, B., Ogur, G., Peltonen, L., Rosatelli, C., Schwartz, M., Spitsyn, V., Timar, L., Beckman, L., Parmentier, M. & Vassart, G.. 1998. The ΔCCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Human Molecular Genetics 7: 399406.CrossRefGoogle Scholar
Liden, K., Linderholm, A. & Gotherstrom, A.. 2006. Pushing it back. Dating the CCR5-Δ32-bp deletion to the Mesolithic in Sweden and its implications for the Meso/Neo transition. Documenta Praehistorica 33: 2937.CrossRefGoogle Scholar
Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., Macdonald, M. E., Stuhlmann, H., Koup, R. A. & Landau, N. R.. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367–77.CrossRefGoogle ScholarPubMed
Lüning, J., Kloos, U. & Albert, S.. 1989. Westliche Nachbarn der bandkeramischen Kultur: La Hoguette und Limburg. Germania 67: 355–93.Google Scholar
O'Brien, T.R., Welzel, T. M. & Kaslow, R. A.. 2008. Human Immunodeficiency Virus Type 1 (HIV-1) and Acquired Immunodeficiency Syndrome (AIDS), in Kaslow, R. A., Mcnicholl, J. M. & Hill, A.V.S. (ed.) Genetic susceptibility to infectious diseases: 282302. Oxford: Oxford University Press.Google Scholar
Perrin, T. 2005. Nouvelles réflexions sur la transition Mésolithique récent-Néolithique ancien à l'abri Gaban (Trento, Italie). Preistoria Alpina 41: 89146.Google Scholar
Roberts, C. A. & Buikstra, J. E.. 2003. The bioarchaeology of tuberculosis. Gainesville (FL): University Press of Florida.Google Scholar
Vidal, N., Peeters, M., Mulanga-Kabeya, C., Nzilambi, N., Robertson, D., Ilunga, W., Sema, H., Tshimanga, K., Bongo, B. & Delaporte, E.. 2000. Unprecedented degree of Human Immunodeficiency Virus Type1 (HIV-1) Group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. Journal of Virology 74: 10498507.CrossRefGoogle Scholar
Weiss, R. A. 2001. Animal origins of human infectious diseases Philosophical Transactions of the Royal Society B 356: 957–77.CrossRefGoogle Scholar
Wolfe, N. D., Dunavan, C. P. & Diamond, J.. 2007. Origins of major human infectious diseases. Nature 447: 279–83.CrossRefGoogle ScholarPubMed