Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T01:10:57.707Z Has data issue: false hasContentIssue false

Water masses’ bacterial community structure and microbial activities in the Ross Sea, Antarctica

Published online by Cambridge University Press:  24 March 2010

Mauro Celussi*
Affiliation:
Department of Biological Oceanography, Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), v. A. Piccard 54, I-34151 Trieste, Italy
Andrea Bergamasco
Affiliation:
CNR–ISMAR, Istituto di Scienze Marine, sezione di Venezia, Castello 1364/A, I-30122 Venezia, Italy
Bruno Cataletto
Affiliation:
Department of Biological Oceanography, Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), v. A. Piccard 54, I-34151 Trieste, Italy
Serena Fonda Umani
Affiliation:
Department of Life Science, Università di Trieste, v. Valerio 28/A, I-34127 Trieste, Italy
Paola Del Negro
Affiliation:
Department of Biological Oceanography, Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), v. A. Piccard 54, I-34151 Trieste, Italy

Abstract

During the summer 2005/06, an oceanographic cruise was carried out in the Ross Sea, from Cape Adare, through the Terra Nova Bay polynya to the eastern edge of the Ross Ice Shelf. We analysed microbial activities (prokaryotic carbon production, protease, phosphatase, beta-glucosidase and lipase activity) and bacterial community structure (using Denaturing Gradient Gel Electrophoresis - DGGE) in order to establish if differences in bacterioplankton assemblages and their metabolic requirements occur within the five Ross Sea water masses: Antarctic Surface Waters (AASW), High Salinity Shelf Water (HSSW), Ice Shelf Water (ISW), Antarctic Bottom Water (AABW), Circumpolar Deep Water (CDW). Differences in activities were found between the highly active AASW and all the other water bodies. A Principal Component Analysis highlighted two main gradients: in the Cape Adare area (AASWn, CDW and AABW) higher phosphatase, lipase and glycolytic activities, increasing towards the surface, were identified, whereas in the southern sector of the basin [AASWs and (m)HSSW] higher leucine uptake and polypeptide degradation characterized the second gradient. DGGE fingerprinting showed for the first time that different water masses harboured diverse bacterial communities, highlighting the high specificity of deep water assemblages. Alpha- and Gammaproteobacteria represented the main phylogenetic groupings in all samples and no substantial difference in the phylogenetic composition of assemblages was found between different water masses.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, G.C.J.Bowman, J.P. 2005. Ecological and biogeographical relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiology Ecology, 51, 265277.CrossRefGoogle ScholarPubMed
Accornero, A., Bergamasco, A., Monaco, A.Tucci, S. 1999. Particle fluxes at the edge of the Ross Ice Shelf: the role of physical forcing. In Spezie, G. & Manzella, G.M.R., eds. Oceanography of the Ross Sea (Antarctica). Milan: Springer, 177195.CrossRefGoogle Scholar
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 33893402.CrossRefGoogle ScholarPubMed
Arístegui, J., Gasol, J.M., Duarte, C.M.Herndl, G.J. 2009. Microbial oceanography of the dark ocean’s pelagic realm. Limnology and Oceanography, 54, 15011529.CrossRefGoogle Scholar
Azam, F. 1998. Microbial control of the ocean carbon flux: the plot thickens. Science, 280, 694696.CrossRefGoogle Scholar
Baltar, F., Arístegui, J., Gasol, J.M., Hernández-León, S.Herndl, G.J. 2007. Strong coast-ocean and surface-depth gradients in prokaryotic assemblage structure and activity in a coastal transitional zone region. Aquatic Microbial Ecology, 50, 6374.CrossRefGoogle Scholar
Bergamasco, A., Defendi, V., Zambianchi, E.Spezie, G. 2002. Evidence of dense water overflow on the Ross Sea shelf-break. Antarctic Science, 14, 271277.CrossRefGoogle Scholar
Bergamasco, A., Defendi, V., Del Negro, P.Umani, S.F. 2003. Effects of the physical properties of water masses on microbial activity during an Ice Shelf water overflow in the central Ross Sea. Antarctic Science, 15, 405411.CrossRefGoogle Scholar
Bergamasco, A., Defendi, V., Budillon, G.Spezie, G. 2004. Downslope flow observations near Cape Adare shelf-break. Antarctic Science, 16, 199204.CrossRefGoogle Scholar
Blümel, M., Süling, J.Imhoff, J. 2007. Depth-specific distribution of Bacteroidetes in the oligotrophic eastern Mediterranean Sea. Aquatic Microbial Ecology, 46, 209224.CrossRefGoogle Scholar
Boström, K.H., Simu, K., Hagström, Å.Riemann, L. 2004. Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnology and Oceanography: Methods, 2, 365373.Google Scholar
Budillon, G., Cordero, S.G.Salusti, E. 2002. On the dense water spreading off the Ross Sea shelf (Southern Ocean). Journal of Marine Systems, 35, 207227.CrossRefGoogle Scholar
Capello, M., Budillon, G., Ferrari, M.Tucci, S. 2004. Suspended matter variability in relation to water masses in Terra Nova Bay (Ross Sea - Antarctica). Chemistry and Ecology, 20, S7S18.CrossRefGoogle Scholar
Carlson, C.A., Hansell, D.A., Peltzer, E.T.Smith, W.O. 2000. Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. Deep-Sea Research II, 47, 32013225.CrossRefGoogle Scholar
Castle, D.Kirchman, D.L. 2004. Composition of estuarine bacterial communities assessed by denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Limnology and Oceanography: Methods, 2, 303314.Google Scholar
Catalano, G., Povero, P., Fabiano, M., Benedetti, F.Goffart, A. 1997. Nutrient utilisation and particulate organic matter changes during summer in the upper mixed layer (Ross Sea, Antarctica). Deep-Sea Research I, 44, 97112.CrossRefGoogle Scholar
Catalano, G., Benedetti, F., Predonzani, S., Goffart, A., Ruffini, S., Rivaro, P.Falconi, C. 1999. Spatial and temporal patterns of nutrient distributions in the Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A.,eds. Ross Sea ecology. Berlin: Springer, 107120.Google Scholar
Celussi, M.Cataletto, B. 2007. Annual dynamics of bacterioplankton assemblages in the Gulf of Trieste (Northern Adriatic Sea). Gene, 406, 113123.CrossRefGoogle ScholarPubMed
Celussi, M., Cataletto, B., Umani, S.F.Del Negro, P. 2009a. Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea. Deep-Sea Research I, 56, 21932205.CrossRefGoogle Scholar
Celussi, M., Paoli, A., Bernardi Aubry, F., Bastianini, M.Del Negro, P. 2008a. Diel microbial variations at a coastal Northern Adriatic station affected by Po River outflows. Estuarine Coastal and Shelf Science, 76, 3644.CrossRefGoogle Scholar
Celussi, M., Balestra, C., Fabbro, C., Crevatin, E., Cataletto, B., Umani, S.F.Del Negro, P. 2008b. Organic-matter degradative potential of Halomonas glaciei isolated from frazil ice in the Ross Sea (Antarctica). FEMS Microbiology Ecology, 65, 504512.CrossRefGoogle ScholarPubMed
Celussi, M., Paoli, A., Crevatin, E., Bergamasco, A., Margiotta, F., Saggiomo, V., Umani, S.F.Del Negro, P. 2009b. Short-term under-ice variability of prokaryotic plankton communities in coastal Antarctic waters (Cape Hallett, Ross Sea). Estuarine, Coastal and Shelf Science, 81, 491500.CrossRefGoogle Scholar
Church, M.J., DeLong, E.F., Ducklow, H.W., Karner, M.B., Preston, C.M.Karl, D.M. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 48, 18931902.CrossRefGoogle Scholar
Cottrell, M.T.Kirchman, D.L. 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnology and Oceanography, 48, 168178.CrossRefGoogle Scholar
Ducklow, H., Carlson, C., Church, M., Kirchman, D., Smith, D.Steward, G. 2001. The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994–1997. Deep-Sea Research II, 48, 41994221.CrossRefGoogle Scholar
Fabiano, M., Povero, P.Misic, C. 1999. Spatial and temporal distribution of particulate organic matter in the Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A.,eds. Ross Sea Ecology. Berlin: Springer, 135149.Google Scholar
Gasol, J.M., del Giorgio, P.A.Duarte, C.M. 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography, 42, 13531363.CrossRefGoogle Scholar
Gentile, G., Giuliano, L., D’Auria, G., Smedile, F., Azzaro, M., De Domenico, M.Yakimov, M.M. 2006. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environmental Microbiology, 8, 21502161.CrossRefGoogle ScholarPubMed
Gordon, L.I., Codispoti, L.A., Morrison, J.M., Millero, F.J., Jennings, J.C.Sweeney, C. 2000. Seasonal evolution of hydrographic properties during the US JGOFS/AESOPS expedition to the Ross Sea, 1996–1997. Deep-Sea Research II, 47, 30953117.CrossRefGoogle Scholar
Hoppe, H.G. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In Kemp, P.F., Sherr, B.F., Sherr, E.B. & Cole, J.J., eds. Current methods in aquatic microbial ecology. Boca Raton, FL: CRC Press, 423431.Google Scholar
Huber, F.Peduzzi, P. 2004. Online tool for analysis of denaturing gradient gel electrophoresis profiles. Applied and Environmental Microbiology, 70, 43904392.CrossRefGoogle ScholarPubMed
Jacobs, S.S., Fairbanks, G.R.Horibe, Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O2/H216O2 ratios in seawater. Antarctic Research Series, 43, 5985.CrossRefGoogle Scholar
Jannasch, H.W.Wirsen, C.O. 1982. Microbial activities in undecompressed and decompressed deep seawater samples. Applied and Environmental Microbiology, 43, 11161124.CrossRefGoogle ScholarPubMed
Karl, D. 1993. Microbial processes in the Southern Ocean. In Friedman, E.I., ed. Antarctic microbiology. New York: Wiley-Liss, 163.Google Scholar
Kirchman, D.L. 2002. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39, 91100.Google ScholarPubMed
Kirchman, D.L., K’nees, E.Hodson, R.E. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural systems. Applied and Environmental Microbiology, 49, 599607.CrossRefGoogle Scholar
MacAyeal, D.R. 1985. Tidal rectification below the Ross Ice Shelf, Antarctica. Antarctic Research Series, 43, 109132.CrossRefGoogle Scholar
Massana, R., Pedrós-Alió, C., Casamayor, E.O.Gasol, J.M. 2001. Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. Limnology and Oceanography, 46, 11811188.CrossRefGoogle Scholar
Misic, C., Povero, P.Fabiano, M. 2002. Ectoenzymatic ratios in relation to particulate matter distribution (Ross Sea, Antarctica). Microbial Ecology, 44, 224234.CrossRefGoogle ScholarPubMed
Monticelli, L.S., La Ferla, R.Maimone, G. 2003. Dynamics of bacterioplankton activities after a summer phytoplankton bloom period in Terra Nova Bay. Antarctic Science, 15, 8593.CrossRefGoogle Scholar
Murray, A.E.Grzymski, J.J. 2007. Diversity and genomics of Antarctic marine micro-organisms. Philosophical Transactions of the Royal Society, B362, 22592271.CrossRefGoogle Scholar
Murray, A.E., Preston, C.M., Massana, R., Taylor, L.T., Blakis, A., Wu, K.DeLong, E.F. 1998. Seasonal and spatial variability of bacterial and Archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology, 64, 25852595.CrossRefGoogle ScholarPubMed
Patching, J.W.Eardly, D. 1997. Bacterial biomass and activity in the deep waters of the eastern Atlantic - evidence of a barophilic community. Deep-Sea Research I, 44, 16551670.CrossRefGoogle Scholar
Pedrós-Alió, C. 2006. Marine microbial diversity: can it be determined? Trends in Microbiology, 14, 257263.CrossRefGoogle ScholarPubMed
Povero, P., Castellano, M., Ruggieri, N., Monticelli, L.S., Saggiomo, V., Chiantore, M., Guidetti, M.Cattaneo-Vietti, R. 2006. Water column features and their relationship with sediments and benthic communities along the Victoria Land coast, Ross Sea, summer 2004. Antarctic Science, 18, 603613.CrossRefGoogle Scholar
Riemann, L.Middelboe, M. 2002. Stability of bacterial and viral community composition in Danish coastal waters as depicted by DNA fingerprinting techniques. Aquatic Microbial Ecology, 27, 219232.CrossRefGoogle Scholar
Sala, M.M., Karner, M., Arin, L.Marrasé, C. 2001. Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquatic Microbial Ecology, 23, 301311.CrossRefGoogle Scholar
Simon, M., Glöckner, F.O.Amann, R. 1999. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquatic Microbial Ecology, 18, 275284.CrossRefGoogle Scholar
Smith, D.C.Azam, F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs, 6, 107114.Google Scholar
Stover, C.L. 2006. A new account of Ross Sea waters: characteristics, volumetrics, and variability. MSc thesis, Texas A&M University, 100 pp. [Unpublished.]Google Scholar
Tamburini, C., Garcin, J., Ragot, M.Bianchi, A. 2002. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep-Sea Research II, 49, 21092123.CrossRefGoogle Scholar
Teira, E., Lebaron, P., van Aken, H.Herndl, G.J. 2006. Distribution and activity of bacteria and Archaea in the deep water masses of the North Atlantic. Limnology and Oceanography, 51, 21312144.CrossRefGoogle Scholar
Umani, S.F., Accornero, A., Budillon, G., Capello, M., Tucci, S., Cabrini, M., Del Negro, P., Monti, M.De Vittor, C. 2002. Particulate matter and plankton dynamics in the Ross Sea polynya of Terra Nova Bay during the austral summer 1997/98. Journal of Marine Systems, 36, 2949.CrossRefGoogle Scholar
Umani, S.F., Monti, M., Bergamasco, A., Cabrini, M., De Vittor, C., Burba, N.Del Negro, P. 2005. Plankton community structure and dynamics versus physical structure from Terra Nova Bay to Ross Ice Shelf (Antarctica). Journal of Marine Systems, 55, 3146.CrossRefGoogle Scholar
West, N.J., Obernosterer, I., Zemb, O.Lebaron, P. 2008. Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environmental Microbiology, 10, 738756.CrossRefGoogle ScholarPubMed
Zaccone, R., Monticelli, L.S., Seritti, A., Santinelli, C., Azzaro, M., Boldrin, A., La Ferla, R.Ribera d’Alcalà, M. 2003. Bacterial processes in the intermediate and deep layers of the Ionian Sea in winter 1999: Vertical profiles and their relationship to the different water masses. Journal of Geophysical Research, 108, 10.1029/2002JC001625.CrossRefGoogle Scholar