Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T21:45:51.088Z Has data issue: false hasContentIssue false

Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009

Published online by Cambridge University Press:  16 March 2011

Vito Vitale*
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy
Boyan Petkov
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy International Centre for Theoretical Physics (ICTP), TRIL Program, Strada Costiera 11, I-34014 Trieste, Italy
Florence Goutail
Affiliation:
Service d'Aeronomie - CNRS, Route Forestiere de Verrieres, 91370 Verrieres le Buisson, France
Christian Lanconelli
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy
Angelo Lupi
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy
Mauro Mazzola
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy
Maurizio Busetto
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy
Andrea Pazmino
Affiliation:
Service d'Aeronomie - CNRS, Route Forestiere de Verrieres, 91370 Verrieres le Buisson, France
Riccardo Schioppo
Affiliation:
Italian National Agency for New Technologies, Energy and Environment (ENEA), ENE FOTO, Experimental field Mt Aquilone, S.S. Garganica 89 Km 178+700, I-71043 Manfredonia, Italy
Laura Genoni
Affiliation:
Department of Geological, Environmental and Marine Sciences, University of Trieste, Via Weiss 2, I-34127 Trieste, Italy
Claudio Tomasi
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti, 101, I-40129 Bologna, Italy

Abstract

The features of solar UV irradiance measured at the Italian-French Antarctic Plateau station, Concordia, during the springs of 2008 and 2009 are presented and discussed. In order to study the impact of the large springtime variations in total ozone column on the fraction of ultraviolet B (UV-B) irradiance (from c. 290–315 nm) reaching the Earth surface, irradiance datasets corresponding to fixed solar zenith angles (SZAs = 65°, 75° and 85°) are correlated to the daily ozone column provided by different instruments. For these SZAs the radiation amplification factor varied from 1.58–1.94 at 306 nm and from 0.68–0.88 at 314 nm. The ultraviolet index reached a maximum level of 8 in the summer, corresponding to the typical average summer value for mid latitude sites. The solar irradiance pertaining to the ultraviolet A (UV-A, 315–400 nm) spectral band was found to depend closely on variations of atmospheric transmittance characteristics as reported by previous studies. Model simulations of UV-B irradiance showed a good agreement with field measurements at 65° and 75° SZAs. For SZA = 85° the ozone vertical distribution significantly impacted model estimations. Sensitivity analysis performed by hypothetically varying the ozone distribution revealed some features of the ozone profiles that occurred in the period studied here.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H.Shettle, E.P. 1986. AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-86-0110, Environmental Research Papers, No. 954. Hanscom AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory, 43 pp.Google Scholar
Bernhard, G., Booth, C.R.Ehramjian, J.C. 2004. Version 2 data of the National Science Foundation's ultraviolet radiation monitoring network: South Pole. Journal of Geophysical Research, 109, 10.1029/2004JD004937.CrossRefGoogle Scholar
Blumthaler, M., Salzgeber, M.Ambach, W. 1995. Ozone and ultraviolet-B irradiance: experimental determination of the radiation amplification factor. Photochemistry and Photobiology, 61, 159162.CrossRefGoogle Scholar
Booth, C.R.Madronich, S. 1994. Radiation amplification factors: improved formulation accounts for large increases in ultraviolet radiation associated with Antarctic ozone depletion. Antarctic Research Series, 62, 3942.CrossRefGoogle Scholar
Brasseur, G.P.Solomon, S. 2005. Aeronomy of the middle atmosphere. Berlin: Springer, 646 pp.CrossRefGoogle Scholar
Calbó, J., Pagès, D.González, J.A. 2005. Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics, 43, 10.1029/2004RG000155.CrossRefGoogle Scholar
Cotter, E.S.N., Jones, A.E., Wolff, E.W.Bauguitte, S. 2003. What controls photochemical NO and NO2 production from Antarctic snow? Laboratory investigation assessing the wavelength and temperature dependence. Journal of Geophysical Research, 108, 10.1029/2002JD002602.CrossRefGoogle Scholar
Dahlback, A. 1996. Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel moderate bandwidth filter instruments. Applied Optics, 35, 65146521.CrossRefGoogle ScholarPubMed
Degünther, M.Meerkötter, R. 2000. Effect of remote clouds on surface UV irradiance. Annales Geophysicae, 18, 679686.CrossRefGoogle Scholar
Farman, J.C., Gardiner, B.G.Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal C1Ox/NOx interaction. Nature, 315, 207210.CrossRefGoogle Scholar
Hernandez, E., Gustavo, A.F.Walter, P.M. 2002. Effect of solar radiation on two Antarctic marine bacterial strains. Polar Biology, 25, 453459.CrossRefGoogle Scholar
Kazantzidis, A., Bais, A.F., Balis, D.S., Kosmidis, E.Zerefos, C.S. 2005. Sensitivity of solar UV radiation to ozone and temperature profiles at Thessaloniki (40.5°N, 23°E), Greece. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 13211330.CrossRefGoogle Scholar
Lapeta, B., Engelsen, O., Litynska, Z., Kois, B.Kylling, A. 2000. Sensitivity of surface UV radiation and ozone column retrieval to ozone and temperature profiles. Journal of Geophysical Research, 105, 50015007.CrossRefGoogle Scholar
Láska, K., Prošek, P., Budík, L., Budíková, M.Milinevsky, G. 2009. Prediction of erythemally effective UVB radiation by means of nonlinear regression model. Environmetrics, 20, 633646.CrossRefGoogle Scholar
Long, C.N.Ackerman, T.P. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. Journal of Geophysical Research, 105, 15 60915 626.CrossRefGoogle Scholar
Lubin, D.Frederick, J.E. 1991. The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover. Journal of Applied Meteorology, 30, 478493.2.0.CO;2>CrossRefGoogle Scholar
Madronich, S. 1993. UV radiation in the natural and perturbed atmosphere. In Tevini, M., ed. Environmental effects of UV (ultraviolet) radiation. Boca Raton, FL: Lewis Publishers, 1769.Google Scholar
Madronich, S.Flocke, S. 1997. Theoretical estimation of biologically effective UV radiation at the Earth's surface. In Zerefos, C.,ed. Solar ultraviolet radiation - modeling, measurements and effects. NATO ASI Series 152. Berlin: Springer, 2348.CrossRefGoogle Scholar
McElroy, C.T., Kerr, J.B., McArthur, L.J.B.Wardle, D.I. 1994. Ground-based monitoring of UV-B radiation in Canada. In Biggs, R.H.&Joyner, M.E.B.,eds. Global environmental change. NATO ASI Series 1. Berlin: Springer, 271282.Google Scholar
McKenzie, R., Smale, D., Bodeker, G.Claude, H. 2003. Ozone profile differences between Europe and New Zealand: effects on surface UV irradiance and its estimation from satellite sensors. Journal of Geophysical Research, 108, 10.1029/2002JD002770.CrossRefGoogle Scholar
McKinlay, A.F.Diffey, B.L. 1987. A reference action spectrum for ultraviolet induced erythema in human skin. Commission Internationale de l'Eclairage Journal, 6, 1722.Google Scholar
Newman, P.A., Kawa, S.R.Nash, E.R. 2004. On the size of the Antarctic ozone hole. Geophysical Research Letters, 31, 10.1029/2004GL020596.CrossRefGoogle Scholar
Newman, S.J., Ritz, D.Nicol, S. 2003. Behavioural reactions of Antarctic krill (Euphausia superba Dana) to ultraviolet and photosynthetically active radiation. Journal of Experimental Marine Biology and Ecology, 297, 203217.CrossRefGoogle Scholar
Ohmura, A., Dutton, E.G., Forgan, B., Frohlich, C., Gilgen, H., Hegner, H., Heimo, A., Konig-Langlo, G., McArthur, B., Muller, G., Philipona, R., Pinker, R., Whitlock, C.H., Dehne, K.Wild, M. 1998. Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bulletin of American Meteorological Society, 79, 21152136.2.0.CO;2>CrossRefGoogle Scholar
Petkov, B., Vitale, V., Tomasi, C., Bonafé, U., Scaglione, S., Flori, D., Santaguida, R., Gausa, M., Hansen, G.Colombo, T. 2006. Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Applied Optics, 45, 43834395.CrossRefGoogle Scholar
Pommereau, J.-P.Goutail, F. 1988. O3 and NO2 ground based measurements by visible spectrometry during Arctic winter and spring 1988. Geophysical Research Letters, 15, 891894.CrossRefGoogle Scholar
Prause, A.R., Scourfield, M.W.J., Bodeker, G.E.Diab, R.D. 1999. Surface UV-B irradiance and total column ozone above SANAE, Antarctica. South African Journal of Science, 95, 2630.Google Scholar
Qian, J., David, K.M.Kieber, J. 2001. Photochemical production of the hydroxyl radical in Antarctic waters. Deep-Sea Research I, 48, 741759.CrossRefGoogle Scholar
Rozema, J., Boelen, P.Blokker, P. 2005. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environmental Pollution, 137, 428442.CrossRefGoogle ScholarPubMed
Setlow, R.B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proceedings of the National Academy of Sciences of the United States of America, 71, 33633366.CrossRefGoogle ScholarPubMed
Smith, R.C., Wan, Z.Baker, K.S. 1992. Ozone depletion in Antarctica: modeling its effect on solar UV irradiance under clear-sky conditions. Journal of Geophysical Research, 97, 73837397.CrossRefGoogle Scholar
Solomon, S., Portmann, R.W., Sasaki, T., Hofmann, D.J.Thompson, D.W.J. 2005. Four decades of ozonesonde measurements over Antarctica. Journal of Geophysical Research, 110, 10.1029/2005JD005917.CrossRefGoogle Scholar
Stamnes, K., Jin, Z.Slusser, J. 1992. Several-fold enhancement of biologically effective ultraviolet radiation levels at McMurdo station Antarctica during the 1990 ozone “hole”. Geophysical Research Letters, 19, 10131016.CrossRefGoogle Scholar
Stamnes, K., Slusser, J.Bowen, M. 1991. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Applied Optics, 30, 44184426.CrossRefGoogle ScholarPubMed
Stolarski, R.S., McPeters, R.D.Newman, P.A. 2005. The ozone hole of 2002 as measured by TOMS. Journal of Atmospheric Sciences, 62, 716720.CrossRefGoogle Scholar
Tomasi, C., Petkov, B., Stone, R.S., Benedetti, E., Vitale, E., Lupi, A., Mazzola, M., Lanconelli, C., Herber, A.von Hoyningen-Huene, W. 2010. Characterizing polar atmospheres and their effect on Rayleigh-scattering optical depth. Journal of Geophysical Research, 115, 10.1029/2009JD012852.CrossRefGoogle Scholar
Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R.S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G.H., Myhre, C.L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R., Ström, J., Toledano, C., Cachorro, V.E., Ortiz, P., De Frutos, A.M., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T.Yamanouchi, T. 2007. Aerosols in polar regions: a historical overview based on optical depth and in situ observations. Journal of Geophysical Research, 112, 10.1029/2007JD008432.CrossRefGoogle Scholar
Wolff, E.W., Jones, A.E., Martin, T.J.Grenfell, T.C. 2002. Modelling photochemical NOX production and nitrate loss in the upper snowpack of Antarctica. Geophysical Research Letters, 29, 10.1029/2002GL015823.CrossRefGoogle Scholar
World Health Organization. 2002. Global solar UV index: a practical guide. Geneva, Switzerland: World Health Organisation, 18 pp.Google Scholar
World Meteorological Organization. 2003. Scientific assessment of ozone depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project Report, No. 47.Google Scholar