Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T17:34:25.004Z Has data issue: false hasContentIssue false

Tafoni show postglacial and modern wind azimuths that are similar at Bunger Hills

Published online by Cambridge University Press:  27 February 2020

Damian B. Gore*
Affiliation:
Department of Earth and Environmental Sciences, Macquarie University, NSW2109, Australia
Michelle R. Leishman
Affiliation:
Department of Biological Sciences, Macquarie University, NSW2109, Australia

Abstract

The directions of strong winds are important for the distribution of marine salt spray, rock weathering, lake chemistry and the distribution of vegetation in Bunger Hills, a coastal ice-free oasis in East Antarctica. Present-day strong winds (> 10 m s−1) dominantly blow from 118 ± 21 degrees true (°T; ± 1 SD). Orientated tafoni (weathering pits) might form in bedrock surfaces by salt and ice crystallization, thermal stress and saltating sand particles, recording the orientation of a strongly directional wind field since the last deglaciation, which commenced > 30 000 years ago. The orientations of these tafoni, at 101 ± 18°T for 686 measurements at 28 sites, are indistinguishable from the direction of modern-day strong winds (> 10 m s−1), indicating that the orientation of the slope of the ice sheet has been stable throughout the last 10 000 years during the Holocene.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Australian Antarctic Division. 2017. Apfel automatic weather station summary data. Metadata retrieved from https://data.aad.gov.au/metadata/records/antarctic_aws; data retrieved from http://aws.acecrc.org.au/datapage.html (accessed 10 May 2017).Google Scholar
Adamson, D.A. & Colhoun, E.A. 1992. Late Quaternary glaciation and deglaciation of the Bunger Hills, Antarctica. Antarctic Science, 4, 435446.CrossRefGoogle Scholar
Adamson, D.A. & Pickard, J. 1986. Physiography and geomorphology of the Vestfold Hills. In Pickard, J.ed. Antarctic oasis. Sydney: Academic Press, 99139.Google Scholar
Augustinus, P.C., Gore, D.B., Leishman, M.R., Zwartz, D. & Colhoun, E.A. 1997. Reconstruction of ice flow across the Bunger Hills, East Antarctica. Antarctic Science, 9, 349354.CrossRefGoogle Scholar
Bentley, M.J., Ó Cofaigh, C., Anderson, J.B., Conway, H., Davies, B., Graham, A.G.C., et al. (the RAISED Consortium). 2014. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 100, 19.CrossRefGoogle Scholar
Berg, S., Melles, M., Gore, D.B., Verkulich, S. & Pushina, Z. 2019. Postglacial evolution of marine and lacustrine water bodies in Bunger Hills. Antarctic Science, 32, 10.1017/S0954102019000476.Google Scholar
Bruthans, J., Filippi, M., Slavík, M. & Svobodová, E. 2018. Origin of honeycombs: testing the hydraulic and case hardening hypotheses. Geomorphology, 303, 6883.CrossRefGoogle Scholar
Bureau of Meteorology. 2017. Edgeworth David Base AWS. Retrieved from https://data.aad.gov.au/metadata/records/Antarctic_Meteorology (accessed 10 May 2017).Google Scholar
Calkin, P. & Cailleux, A. 1962. A quantitative study of cavernous weathering (taffonis) and its application to glacial chronology in Victoria Valley, Antarctica. Zeitschrift für Geomorphologie, 6, 317324.Google Scholar
Desarnaud, J., Bonn, D. & Shahidzadeh, N. 2016. The pressure induced by salt crystallization in confinement. Scientific Reports, 6, 10.1038/srep30856.CrossRefGoogle ScholarPubMed
DiRuggiero, J., Wierzchos, J., Robinson, C.K., Souterre, T., Ravel, J., Artieda, O., et al. 2013. Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences, 10, 24392450.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Meyer, M.A., Andersen, D.T., Wharton, R.A. Jr & Hastings, J.T. 1996. Climatology and implications for perennial lake ice occurrence at Bunger Hills Oasis, East Antarctica. Antarctic Science, 8, 289296.CrossRefGoogle Scholar
Gibson, J.A.E. & Andersen, D.T. 2002. Physical structure of epishelf lakes of the southern Bunger Hills, East Antarctica. Antarctic Science, 14, 253261.CrossRefGoogle Scholar
Gibson, J.A.E., Gore, D.B. & Kaup, E. 2002. Algae River: an extensive drainage system in the Bunger Hills, East Antarctica. Polar Record, 38, 141152.CrossRefGoogle Scholar
Gore, D.B. & Leishman, M.R. 2020. Salt, sediments and weathering environments in Bunger Hills. Antarctic Science, 32, 10.1017/S0954102020000073.Google Scholar
Gore, D.B., Creagh, D.C., Burgess, J.S., Colhoun, E.A., Spate, A.P. & Baird, A.S. 1996. Composition, distribution and origin of surficial salts in the Vestfold Hills, East Antarctica. Antarctic Science, 8, 7384.CrossRefGoogle Scholar
Gore, D.B., Rhodes, E.J., Augustinus, P.C., Leishman, M.R., Colhoun, E.A. & Rees-Jones, J. 2001. Bunger Hills, East Antarctica: ice free at the Last Glacial Maximum. Geology, 29, 11031106.2.0.CO;2>CrossRefGoogle Scholar
Groom, K.M., Allen, C.D., Mol, L., Paradise, T.R. & Hall, K. 2015. Defining tafoni: re-examining terminological ambiguity for cavernous rock decay phenomena. Progress in Physical Geography, 39, 775793.CrossRefGoogle Scholar
Guglielmin, M., Cannone, N., Strini, A., Lewkowicz, A. 2005. Biotic and abiotic processes on granite weathering landforms in a cryotic environment, Northern Victoria Land, Antarctica. Permafrost and Periglacial Processes, 16, 6985.CrossRefGoogle Scholar
Hall, K. & André, M.-F. 2006. Temperature observations in Antarctic tafoni: implications for weathering, biological colonization, and tafoni formation. Antarctic Science, 18, 377384.CrossRefGoogle Scholar
Jutson, J.T. 1918. The influence of salts in rock weathering of sub-arid western Australia. Proceedings of the Royal Society of Victoria, 30, 165172.Google Scholar
Kiernan, K., Gore, D.B., Fink, D., McConnell, A., Sigurdsson, I.A. & White, D.A. 2009. Deglaciation and weathering of Larsemann Hills, East Antarctica. Antarctic Science, 21, 373382.CrossRefGoogle Scholar
Leishman, M.R., Gibson, J.A.E. & Gore, D.B. 2020. Spatial distribution of birds and terrestrial plants of Bunger Hills. Antarctic Science, 32, 10.1017/S0954102020000012.Google Scholar
Mackintosh, A., White, D., Fink, D., Gore, D., Pickard, J. & Fanning, P. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.CrossRefGoogle Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., et al. 2011. Sea level rise and ocean warming drive recession of the East Antarctic ice sheet. Nature Geoscience, 4, 10.1038/ngeo1061Google Scholar
Mackintosh, A.N., Verleyan, E., O'Brien, P.E., White, D.A., Jones, R.S., McKay, R., et al. 2014. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews, 100, 1030.CrossRefGoogle Scholar
Melles, M., Verkulich, S.R. & Hermichen, W.-D. 1994. Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Science, 6, 375378.CrossRefGoogle Scholar
Melles, M., Kulbe, T., Verkulich, S., Pushina, Z. & Hubberten, H.-W. 1997. Late Pleistocene and Holocene environmental history of Bunger Hills, East Antarctica, as revealed by fresh-water and epishelf lake sediments. In Ricci, C.E., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica Publication, 809820.Google Scholar
Mustoe, G.E. 1983. Cavernous weathering in the Capitol Reef Desert, Utah. Earth Surface Processes and Landforms, 8, 517526.CrossRefGoogle Scholar
Paradise, T.R. 2013. Tafoni and other rock basins. In Shroder, J.F., ed. Treatise on geomorphology, vol. 4. San Diego: Academic Press, 111126.CrossRefGoogle Scholar
Pickard, J. 1982. Holocene winds of the Vestfold Hills, Antarctica. New Zealand Journal of Geology and Geophysics, 25, 353358.CrossRefGoogle Scholar
Prebble, M.M. 1967. Cavernous weathering in the Taylor Dry Valley, Victoria Land, Antarctica. Nature, 216, 11941195.CrossRefGoogle Scholar
Scherer, R.P., DeConto, R.M., Pollard, D. & Alley, R.B. 2016. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nature Communications, 7, 10.1038/ncomms12957.CrossRefGoogle Scholar
Strini, A., Guglielmin, M. & Hall, K. 2008. Tafoni development in a cryotic environment: an example from Northern Victoria Land, Antarctica. Earth Surface Processes and Landforms, 33, 15021519.CrossRefGoogle Scholar
Verkulich, S.R., Melles, M., Hubberten, H.-W. & Pushina, Z.V. 2002. Holocene environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica. Journal of Paleolimnology, 28, 253267.CrossRefGoogle Scholar
Supplementary material: File

Gore and Leishman supplementary material

Gore and Leishman supplementary material

Download Gore and Leishman supplementary material(File)
File 45.6 KB