Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:33:38.988Z Has data issue: false hasContentIssue false

Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica

Published online by Cambridge University Press:  11 November 2009

Michiel van den Broeke*
Affiliation:
Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), The Netherlands
Gert König-Langlo
Affiliation:
Alfred Wegener Institute for Marine and Polar Research (AWI), Bremerhaven, Germany
Ghislain Picard
Affiliation:
Laboratoire de Glaciologie et de Géophysique de l’Environnement (LGGE), Grenoble, France
Peter Kuipers Munneke
Affiliation:
Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), The Netherlands
Jan Lenaerts
Affiliation:
Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), The Netherlands

Abstract

A surface energy balance model is forced by 13 years of high-quality hourly observations from the Antarctic coastal station Neumayer. The model accurately reproduces observed surface temperatures. Surface sublimation is significant in summer, when absorbed solar radiation heats the surface. Including a first order estimate of snowdrift sublimation in the calculation more than triples the total sublimation, removing 19% of the solid precipitation, indicating that snowdrift sublimation is potentially important for the mass balance of Antarctic ice shelves. Surface melt occurs at Neumayer in all summers, but all the meltwater refreezes. In two-thirds of the cases, the refreezing is quasi-instantaneous (within the model timestep of 6 min), so that no liquid water remains in the snow. For all other events, the occurrence of liquid water in the snowpack at Neumayer agrees well with satellite-based liquid water detection.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E.A. 1976. A point energy and mass balance model of a snow cover. NOAA Technical Report, NWS19.Google Scholar
Anderson, P.S. 1994. A method for rescaling humidity sensors at temperatures well below freezing. Journal of Atmospheric and Oceanic Technology, 11, 13881391.2.0.CO;2>CrossRefGoogle Scholar
Andreas, E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorology, 38, 159184.CrossRefGoogle Scholar
Bintanja, R. Reijmer, C.H. 2001. A simple parameterization for snowdrift sublimation over Antarctic snow surfaces. Journal of Geophysical Research, 106, 3173931748.CrossRefGoogle Scholar
Déry, S.J. Yau, M.K. 2001. Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary-Layer Meteorology, 99, 297.CrossRefGoogle Scholar
Déry, S.J., Taylor, P.A. Xiao, J. 1998. The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Boundary-Layer Meteorology, 89, 251283.Google Scholar
Fahnestock, M.A., Abdalati, W. Shuman, C. 2002. Long melt seasons on ice shelves of the Antarctic Peninsula: an analysis using satellite-based microwave emission measurements. Annals of Glaciology, 34, 127133.CrossRefGoogle Scholar
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R. Fily, M. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dynamics, 23, 803813.CrossRefGoogle Scholar
Fujii, Y. 1979. Sublimation and condensation at the ice sheet surface of Mizuho Station, Antarctica. Antarctic Record, 67, 5163.Google Scholar
Gallée, H., Guyomarch, G. Brun, E. 2001. Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow surface properties. Boundary-Layer Meteorology, 99, 119.CrossRefGoogle Scholar
Gosink, J.P. 1989. The extension of a density current model of katabatic winds to include the effects of blowing snow and sublimation. Boundary-Layer Meteorology, 49, 367394.CrossRefGoogle Scholar
King, J.C., Anderson, P.S. Mann, G.W. 2001. The seasonal cycle of sublimation at Halley, Antarctica. Journal of Glaciology, 47, 18.CrossRefGoogle Scholar
King, J.C., Argentini, S.A. Anderson, P.S. 2006. Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. Journal of Geophysical Research, 111, 10.1029/2005JD006130.CrossRefGoogle Scholar
König-Langlo, G. 1985. Roughness length of an Antarctic ice shelf. Polarforschung, 55, 2732.Google Scholar
König-Langlo, G., King, J.C. Pettré, P. 1998. Climatology of the three Antarctic stations Dumont d’Urville, Neumayer and Halley. Journal of Geophysical Research, 103, 1093510946.CrossRefGoogle Scholar
Magand, O., Picard, G., Fily, M., Brucker, L. Genthon, C. 2008. Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere, 2, 109115.CrossRefGoogle Scholar
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R.T., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M.M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J.R., Royer, A., Uemura, R., Schmidt, G.A., Schlosser, E., Simoes, J.C., Steig, E.J., Stenni, B., Stievenard, M., van Den Broeke, M.R., van De Wal, R.S.W., van De Berg, W.J., Vimeux, F. White, J.W.C. 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotope modeling. Journal of Climate, 21, 33593387.CrossRefGoogle Scholar
Morris, E.M. Vaughan, D.G. 2003. Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarctic Research Series, 79, 6168.Google Scholar
Nghiem, S.V., Steffen, K., Neumann, G. Huff, R. 2008. Snow Accumulation and Snowmelt Monitoring in Greenland and Antarctica. In Tregoning, P. & Rizos, C., eds. Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools IAG Symposium Cairns, Australia 22–26 August. 2005. 10.1007/978-3-540-49350-1_5, 31–38.Google Scholar
Picard, G. Fily, M. 2006. Surface melting observations in Antarctica by microwave radiometers: correcting 26 year-long timeseries from changes in acquisition hours. Remote Sensing of Environment, 104, 325.CrossRefGoogle Scholar
Picard, G., Fily, M. Gallée, H. 2007. Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Annals of Glaciology, 46, 2934.CrossRefGoogle Scholar
Scambos, T., Hulbe, C. Fahnestock, M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 7992.Google Scholar
Schlosser, E. Oerter, H. 2002. Shallow firn cores from Neumayer, Ekströmisen, Antarctica: a comparison of accumulation rates and stable-isotope ratios. Annals of Glaciology, 35, 9196.CrossRefGoogle Scholar
Sergienko, O. Macayeal, D.R. 2005. Surface melting on Larsen Ice Shelf, Antarctica. Annals of Glaciology, 40, 215.CrossRefGoogle Scholar
Takahashi, S., Naruse, R., Nakawo, M. Mae, S. 1988. A bare ice field in East Queen Maud Land, Antarctica, caused by horizontal divergence of drifting snow. Annals of Glaciology, 11, 156160.CrossRefGoogle Scholar
van De Berg, W.J., van Den Broeke, M.R. van Meijgaard, E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research, 111, 10.1029/2005JD006495.CrossRefGoogle Scholar
van Den Broeke, M.R. 2005. Strong melting preceded collapse of Antarctic ice shelf. Geophysical Research Letters, 32, 10.1029/2005GL023247.CrossRefGoogle Scholar
van Den Broeke, M.R., Reijmer, C.H. van De Wal, R.S.W. 2004b. A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. Journal of Glaciology, 50, 565582.CrossRefGoogle Scholar
van Den Broeke, M.R., van As, D., Reijmer, C.H. van De Wal, R.S.W. 2004a. Assessing and improving the quality of unattended radiation observations in Antarctica. Journal of Atmospheric and Oceanic Technology, 21, 14171431.2.0.CO;2>CrossRefGoogle Scholar
van Den Broeke, M.R., van As, D., Reijmer, C.H. van De Wal, R.S.W. 2005a. Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. International Journal of Climatology, 25, 10801101.CrossRefGoogle Scholar
van Den Broeke, M.R., van De Berg, W.J., van Meijgaard, E. Reijmer, C.H. 2006. Identification of Antarctic ablation areas using a regional atmospheric climate model. Journal of Geophysical Research, 111, 10.1029/2006JD007127.CrossRefGoogle Scholar
van Den Broeke, M.R., Reijmer, C.H., van As, D., van De Wal, R.S.W. Oerlemans, J. 2005b. Seasonal cycles of Antarctic surface energy balance from Automatic Weather Stations. Annals of Glaciology, 41, 131139.CrossRefGoogle Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climate Change, 60, 243274.CrossRefGoogle Scholar
Zwally, H.J. Fiegles, S. 1994. Extent and duration of Antarctic surface melting. Journal of Glaciology, 40, 463.CrossRefGoogle Scholar