Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:44:44.377Z Has data issue: false hasContentIssue false

Shifts in microphytoplankton species and cell size at Admiralty Bay, Antarctica

Published online by Cambridge University Press:  13 November 2014

Priscila Kienteca Lange*
Affiliation:
Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Laboratório de Fitoplâncton e Microorganismos Marinhos, Avenue Italia, Km 8, Rio Grand 96201-900, Brazil Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenue Carlos Chagas, 373, Prédio CCS, Bl. A, Ilha do Fundão, Rio de Janeiro 21949-902, Brazil
Denise Rivera Tenenbaum
Affiliation:
Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenue Carlos Chagas, 373, Prédio CCS, Bl. A, Ilha do Fundão, Rio de Janeiro 21949-902, Brazil
Virgínia Maria Tavano
Affiliation:
Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Laboratório de Fitoplâncton e Microorganismos Marinhos, Avenue Italia, Km 8, Rio Grand 96201-900, Brazil
Rodolfo Paranhos
Affiliation:
Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenue Carlos Chagas, 373, Prédio CCS, Bl. A, Ilha do Fundão, Rio de Janeiro 21949-902, Brazil
Lucia De Siqueira Campos
Affiliation:
Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenue Carlos Chagas, 373, Prédio CCS, Bl. A, Ilha do Fundão, Rio de Janeiro 21949-902, Brazil

Abstract

Phytoplankton (>15 µm) was investigated in three shallow coastal areas at Admiralty Bay (AB) between the summers of 2002–03 and 2008–09. Phytoplankton abundance was low (103 cells l-1) and, over time, the prevailing cell size decreased due to a shift in phytoplankton dominant species from diatoms to dinoflagellates. In situ and remote sensing data showed that oscillations in sea surface temperature, precipitation, ice formation/melting, irradiance (cloud cover) and bottom circulation (indexed by the Antarctic Oscillation Index; AAO) were shown to govern the structure of the phytoplankton. Under negative AAO, diatoms prevailed, with the dominance of large (>80 µm) benthic diatoms (e.g. Corethron pennatum and Navicula directa) in periods of low production (102 cells l-1 in 2002–03), and medium-sized (31–80 µm) centrics (e.g. Thalassiosira spp. and Stellarima microtrias) when the abundance was higher (104 cells l-1 in 2003–04). Conversely, positive AAO led to the co-dominance of dinoflagellates and planktonic diatoms (e.g. Pseudo-nitzschia spp.) in the summers of 2007–08 and 2008–09. These results suggest that the AAO can be a good predictor of phytoplankton in coastal areas around the western Antarctic Peninsula, and may help our understanding of changes in other trophic levels of the food web.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Handal, A.Y. & Wulff, A. 2008. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Botanica Marina, 51, 411435.Google Scholar
Armand, L.K., Cornet-Barthaux, V., Mosseri, J. & Quéguiner, B. 2008. Late summer diatom biomass and community structure on and around the naturally iron-fertilised Kerguelen Plateau in the Southern Ocean. Deep-Sea Research II - Topical Studies in Oceanography, 55, 653676.Google Scholar
Brandini, F.P. 1993. Phytoplankton biomass in an Antarctic coastal environment during stable water conditions – implications for the iron limitation theory. Marine Ecology Progress Series, 93, 267275.CrossRefGoogle Scholar
Brandini, F.P. & Rebello, J. 1994. Wind field effect on hydrography and chlorophyll dynamics in the coastal pelagial of Admiralty Bay, King George Island, Antarctica. Antarctic Science, 6, 433442.Google Scholar
Corbisier, T.N., Petti, M.A.V., Skowronski, R.S.P. & Brito, T.A.S. 2004. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biology, 27, 7582.Google Scholar
Cornejo-Donoso, J. & Antezana, T. 2008. Preliminary trophic model of the Antarctic Peninsula ecosystem (sub-area CCAMLR 48.1). Ecological Modelling, 218, 117.Google Scholar
Gili, J.M., Alva, V., Pages, F., Kloser, H. & Arntz, W.E. 1996. Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea . Polar Biology, 16, 507512.CrossRefGoogle Scholar
Grasshoff, K., Erhardt, M. & Kremling, K. 1999. Methods of seawater analysis. Weinhein: Verlag-Chemie, 600 pp.Google Scholar
Hewes, C.D. 2009. Cell size of Antarctic phytoplankton as a biogeochemical condition. Antarctic Science, 21, 457470.CrossRefGoogle Scholar
Kang, J.S., Kang, S.H., Lee, J.H. & Lee, S. 2002. Seasonal variation of microalgal assemblages at a fixed station in King George Island, Antarctica, 1996. Marine Ecology Progress Series, 229, 1932.Google Scholar
Kang, S.H., Kang, J.S., Lee, S., Chung, K.H., Kim, D. & Park, M.G. 2001. Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. Journal of Plankton Research, 23, 333352.Google Scholar
Klöser, H., Ferreyra, G., Schloss, I., Mercuri, G., Laturnus, F. & Curtosi, A. 1993. Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). Journal of Marine Systems, 4, 289301.Google Scholar
Komarek, J. 2007. Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Polish Polar Research, 28, 211231.Google Scholar
Kopczynska, E.E. 2008. Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: six years of monitoring. Polish Polar Research, 29, 117139.Google Scholar
Lange, P.K., Tenenbaum, D.R., Braga, E.D. & Campos, L.S. 2007. Microphytoplankton assemblages in shallow waters at Admiralty Bay (King George Island, Antarctica) during the summer 2002–2003. Polar Biology, 30, 14831492.CrossRefGoogle Scholar
Li, W.K.W., McLaughlin, F.A., Lovejoy, C. & Carmack, E.C. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science, 326, 539.Google Scholar
Ligowski, R. 2000. Benthic feeding by krill, Euphausia superba Dana, in coastal waters off West Antarctica and in Admiralty Bay, South Shetland Islands. Polar Biology, 23, 619625.CrossRefGoogle Scholar
Liu, J.P., Curry, J.A. & Martinson, D.G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31, 10.1029/2003GL018732.Google Scholar
Martin, J.H., Gordon, R.M. & Fitzwater, S.E. 1990. Iron in Antarctic waters. Nature, 345, 156158.Google Scholar
Medlin, L.K. & Priddle, J. 1990. Introduction. Polar marine diatoms. Cambridge: British Antarctic Survey, Natural Environment Research Council, 214 pp.Google Scholar
Mills, M.M., Kropuenske, L.R., van Dijken, G.L., Alderkamp, A.C., Berg, G.M., Robinson, D.H., Welschmeyer, N.A. & Arrigo, K.R. 2010. Photophysiology in two Southern Ocean phytoplankton taxa: photosynthesis of Phaeocystis antarctica (Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under simulated mixed-layer irradiance. Journal of Phycology, 46, 11141127.CrossRefGoogle Scholar
Moline, M.A., Claustre, H., Frazer, T.K., Schofield, O. & Vernet, M. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 10, 19731980.CrossRefGoogle Scholar
Moline, M.A., Prézelin, B.B., Schofield, O. & Smith, R.C. 1997. Temporal dynamics of coastal Antarctic phytoplankton: environmental driving forces and impact of a 1991/92 summer diatom bloom on the nutrient regimes. In Battaglia, B.J., Valencia, J. & Walton, D.W.H., eds. 1997. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 6772.Google Scholar
Moline, M.A. & Prézelin, B.B. 1996. Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Marine Ecology Progress Series, 145, 143160.CrossRefGoogle Scholar
Montes-Hugo, M.A., Vernet, M., Martinson, D., Smith, R. & Iannuzzi, R. 2008. Variability on phytoplankton size structure in the western Antarctic Peninsula (1997–2006). Deep-Sea Research II - Topical Studies in Oceanography, 55, 2106 2117.Google Scholar
Montes-Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E. & Schofield, O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science, 323, 14701473.Google Scholar
Nedzarek, A. 2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 20, 135145.Google Scholar
Opalinski, K.W., Maciejewska, K. & Georgieva, L.V. 1997. Notes on food selection in the Antarctic krill, Euphausia superba. Polar Biology, 17, 350357.Google Scholar
Pakhomov, E.A., Froneman, P.W. & Perissinotto, R. 2002. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep-Sea Research II - Topical Studies in Oceanography, 49, 18811907.CrossRefGoogle Scholar
Parsons, T.R., Maita, Y. & Lalli, C.M. 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press, 173 pp.Google Scholar
Pichlmaier, M., Aquino, F.E., Da-Silva, C.S. & Braun, M. 2004. Suspended sediments in Admiralty Bay, King George Island (Antarctica). Brazilian Antarctic Research, 4, 7785.Google Scholar
Ribic, C.A., Chapman, E., Fraser, W.R., Lawsond, G.L. & Wiebe, P.H. 2008. Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica. Deep-Sea Research II - Topical Studies in Oceanography, 55, 485499.Google Scholar
Robakiewicz, M. & Rakusa-Suszczewski, S. 1999. Application of 3D circulation model to Admiralty Bay, King George Island, Antarctica. Polish Polar Research, 20, 4358.Google Scholar
Sander, M., Balbão, T.C., Polito, M.J., Costa, E.S. & Carneiro, A.P.B. 2007. Recent decrease in chinstrap penguin Pygoscelis antarctica populations at two of Admiralty Bay’s islets on King George Island, South Shetland Islands, Antarctica. Polar Biology, 30, 659661.Google Scholar
Schloss, I.R., Ferreyra, G.A. & Ruiz-Pino, D. 2002. Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. Journal of Marine Systems, 36, 129143.CrossRefGoogle Scholar
Schloss, I., Klöser, H., Ferreyra, G., Curtosi, A., Mercuri, G. & Pinola, E. 1997. Factors governing phytoplankton and particulate matter variation in Potter Cove, King George Antarctica. In Battaglia, B., Valencia, J. & Walton, D.W.H. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 135141.Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O. & Ferreyra, G.A. 2012. Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems, 92, 5366.Google Scholar
Sieburth, J.M., Smetacek, V. & Lenz, J. 1978. Pelagic ecosystem structure: heterotrophic compartments of plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23, 12561263.Google Scholar
Uitz, J., Claustre, H., Griffiths, F.B., Ras, J., Garcia, N. & Sandronie, V , . 2009. A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep-Sea Research I - Oceanographic Research Papers, 56, 541560.Google Scholar
Utermöhl, H. 1958. Perfeccionamento del método cuantitativo del fitoplancton. Communications, International Association for Theoretical and Applied Limnology, 9, 189.Google Scholar