Article contents
Sedimentary breccia and diamictite of the Cambrian Spurs Formation in northern Victoria Land, Antarctica: two kinds of debris flows in a submarine channel system
Published online by Cambridge University Press: 30 April 2018
Abstract
The submarine channel-fill system of the Cambrian Spurs Formation exhibits unique metre-scale cycles of breccia and diamictite. The studied sections, Eureka Spurs, are located at the Mariner Glacier in the central-eastern part of northern Victoria Land, Antarctica. A facies analysis of the channel-fill deposit has led to the recognition of four main lithofacies: breccia, diamictite, thin-bedded sandstone and mudstone. The channel-fill deposit consists of two architectural elements: hollow-fill (HF) and sheet-like (SL) elements. The SL has wide convex-up geometry and consists solely of a very thick bed of diamictite, and is interpreted as a submarine channel lobe. The HF has a concave-up erosional base and flat upper surface. The HF consists of nine cyclic alternations of underlying breccia (cohesionless debris flow) and overlying diamictite (cohesive debris flow). The deposition of breccia is interpreted to have been controlled by repeated allogenic processes such as earthquakes. In contrast, the abrupt vertical transition from breccia to diamictite in each cycle is interpreted to have resulted from an autogenic, slope instability-related process. The interaction of the allogenic and autogenic factors recorded in the metre-scale unique cyclic deposits provides new criteria to interpret cycles of submarine debris flow.
- Type
- Earth Sciences
- Information
- Copyright
- © Antarctic Science Ltd 2018
References
- 1
- Cited by