Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T07:45:51.844Z Has data issue: false hasContentIssue false

Retrospective modelling of air pollution due to the operation of scientific stations in Antarctica: an experience of reanalysis

Published online by Cambridge University Press:  24 February 2022

Sergey Kakareka*
Affiliation:
Institute for Nature Management, National Academy of Sciences of Belarus, Skoriny str. 10, 220076Minsk, Belarus
Sviatlana Salivonchyk
Affiliation:
Institute for Nature Management, National Academy of Sciences of Belarus, Skoriny str. 10, 220076Minsk, Belarus

Abstract

This article is devoted to the assessment of trends of atmospheric air pollution and atmospheric impacts on the environment in the oases of the Thala Hills, Enderby Land, East Antarctica. Estimates of annual emissions of SO2, nitrogen oxides (NOx), inhalable particulate matter with a diameter of ≤ 10 μm (PM10) and CO and their dynamics over 56 years of Thala Hills exploration are given, as well as levels of surface air concentrations of SO2, NOx, PM10 and PM10 atmospheric depositions using air dispersion modelling. It is shown, in particular, that average annual emissions of NOx, PM10 and CO peaked in the early 1990s and have decreased 30.9 times by now. Sulphur dioxide emissions were highest in the late 1960s–late 1970s and decreased 270 times since then. Results of comparisons of modelled air concentrations and depositions with the available data on the measurement of surface air pollutant concentrations and atmospheric depositions are presented. Sources of uncertainties in the estimates of emissions, ground-level concentrations and depositions are described. Proposed approaches can be used to assess the cumulative impacts of ongoing and planned activities on atmospheric air and on other components of the environment through assessing the atmospheric air in the Antarctic Treaty area.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antarctic Science Ltd.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AADC. 2021. Data management and spatial data services. Thala Hills. Available at https://data.aad.gov.au/aadc/gaz/display_name.cfm?gaz_id=723Google Scholar
AP-42. 1996. Compilation of Air Pollutants Emission Factors. Vol. 1. Stationary Point and Area Sources. 3.3 Gasoline and Diesel Industrial Engines. 5th Edition. (GPO 055-000-00500-1). USEPA. Research Triangle Park, NC. [Electronic resource]. Available at https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdfGoogle Scholar
ATCM40. 2017. IP 003. The experience in the reduction of the sources of waste generation in the Belarusian Antarctic Expedition. Available at https://documents.ats.aq/ATCM40/ip/ATCM40_ip003_e.docGoogle Scholar
EMEP/EEA. 2019. EMEP/EEA air pollutant emission inventory guidebook 2019. Technical guidance to prepare national emission inventories. [2020-05-02]. European Environment Agency, Copenhagen. Available at https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-1-energy-industries/viewGoogle Scholar
European Commission. 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, L152, 144.Google Scholar
Golitsyn, G.S., Grechko, E.I., Elansky, N.F. & Pugachev, N.S. 1991. Some Soviet measurements of trace gases. Tellus A: Dynamic Meteorology and Oceanography, 43, 10.3402/tellusa.v43i4.11945.CrossRefGoogle Scholar
GOST R 56163-2019. 2019. Air pollutants emission. Methodology of calculation of emission into the atmosphere from stationary diesel engines (new and after major repairs) of various capacities and purposes during their operation. [ГОСТ Р 56163 − 2019. Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов загрязняющих веществ в атмосферу стационарными дизельными установками (новыми и после капитального ремонта) различной мощности и назначения при их эксплуатации]. Available at https://files.stroyinf.ru/Data2/1/4293726/4293726840.pdfGoogle Scholar
Howat, I.M., Porter, C., Smith, B.E., Noh, M.J. & Morin, P. 2019. The reference elevation model of Antarctica. The Cryosphere, 13, 10.5194/tc-13-665-2019.CrossRefGoogle Scholar
Kakareka, S. 2020. Air pollutants and greenhouse gases emission inventory for power plants in the Antarctic. Advances in Polar Science, 31, 10.13679/j.advps.2020.0032.Google Scholar
Kakareka, S. & Salivonchyk, S. 2020. An assessment of the impacts of diesel power plants on air quality in Antarctica. Advances in Polar Science, 31, 10.13679/j.advps.2019.0029.Google Scholar
Khan, A.L., Klein, A.G., Katich, J.M. & Xian, P. 2019. Local emissions and regional wildfires influence refractory black carbon observations near Palmer Station, Antarctica. Frontiers in Earth Science, 7, 10.3389/feart.2019.00049.CrossRefGoogle Scholar
Lugar, R.M. 1993. Results of SO2, NOx, and CO monitoring at McMurdo Station, Antarctica (No. INEL/MISC-94046). Idaho National Engineering Lab., Idaho Falls, ID (United States). Available at https://doi.org/10.2172/10192136CrossRefGoogle Scholar
Lugar, R.M. 1994. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica (No. INEL--94/0114). Idaho National Engineering Lab. Available at https://doi.org/10.2172/29363CrossRefGoogle Scholar
Mazzera, D.M., Lowenthal, D.H., Chow, J.C. & Watson, J.G. 2001a. Sources of PM10 and sulfate aerosol at McMurdo station, Antarctica. Chemosphere, 45, 10.1016/S0045-6535(00)00591-9.CrossRefGoogle Scholar
Mazzera, D.M., Lowenthal, D.H., Chow, J.C., Watson, J.G. & Grubı̆sı́c, V. 2001b. PM10 measurements at McMurdo station, Antarctica. Atmospheric Environment, 35, 10.1016/S1352-2310(00)00409-X.CrossRefGoogle Scholar
MHRB. 2016. Standards for Maximum Permissible Concentrations of Pollutants in the Atmospheric Air. 2016. Approved by the Decree of the Ministry of Health of the Republic of Belarus No. 113, November 8, 2016. [Нормативы предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе. Утв. Постановлением Министерства здравоохранения Республики Беларусь № 113 от 8 ноября 2016 г]. Available at http://minzdrav.gov.by/upload/dadvfiles/000352_132617_postan113.docGoogle Scholar
MNR RF. 2001. Methodology for calculating pollutant emissions from stationary diesel engines [Методика расчета выбросов загрязняющих веществ от стационарных дизельных установок]. St. Petersburg. [Electronic resource]. Availabel at http://gostrf.com/normadata/1/4293852/4293852662.pdfGoogle Scholar
NASB. 2015. Construction and operation of Belarusian Antarctic research station at Mount Vechernyaya, Enderby Land. Final comprehensive environmental evaluation. Available at https://www.ats.aq/documents/EIA/01693enCEEBelarusMountVechernyaya.pdfGoogle Scholar
RAE. 2021 [Российская Антарктическая экспедиция] [Electronic resource]. Available at http://raexp.ru/Google Scholar
Savatyugin, L.M. 2001. Russian research in Antarctica. (Thirty first SAE–Fortieth RAE). [Российские исследования в Антарктике (Тридцать первая САЭ–Сороковая РАЭ)]. Hydrometeoizdat, V, III, 345 pp.Google Scholar
Savatyugin, L.M. 2009. Russian research in Antarctica. (Forty first RAE–Fiftieth RAE). [Российские исследования в Антарктике (Сорок первая САЭ–Пятидесятая САЭ)]. Hydrometeoizdat, V, IV, 373 pp.Google Scholar
Savatyugin, L.M. & Preobrazhenskaya, M.A. 1999. Russian research in Antarctica (First–Twentieth Soviet Antarctic Expedition) [Российские исследования в Антарктике (Первая–Двадцатая Советская Антарктическая Экспедиция)]. Hydrometeoizdat, V, I, 363 pp.Google Scholar
Savatyugin, L.M. & Preobrazhenskaya, M.A. 2000. Russian research in Antarctica (Twenty first SAE–Thirtieth RAE). [Российские исследования в Антарктике (Двадцать первая САЭ–Тридцатая РАЭ)]. Hydrometeoizdat, V, II, 285 pp.Google Scholar
Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A. et al. 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 10.1017/S0954102009001722.CrossRefGoogle Scholar
Tiwari, A.K. 2017. Environmental monitoring around Indian Antarctic Stations. Proceedings of Indian National Science Academy, 83, 10.16943/ptinsa/2017/48964.Google Scholar
Truzzi, C., Lambertucci, L., Illuminati, S., Annibaldi, A. & Scarponi, G. 2005. Direct gravimetric measurements of the mass of the Antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay. Annali di Chimica: Journal of Analytical, Environmental and Cultural Heritage Chemistry, 95, 10.1002/adic.200590099.CrossRefGoogle ScholarPubMed
US EPA. 2004. User's guide for the AMS/EPA regulatory mode (AERMOD. EPA-454/B-03-001). US Research Triangle Park, NC: United States Environmental Protection Agency.Google Scholar
WHO. 2000. Air quality guidelines for Europe. Geneva: World Health Organization.Google Scholar
WHO. 2006. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. Geneva: World Health Organization.Google Scholar