Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T01:26:35.923Z Has data issue: false hasContentIssue false

Regional variability in eukaryotic protist communities in the Amundsen Sea

Published online by Cambridge University Press:  16 April 2013

Christian Wolf*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Stephan Frickenhaus
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Estelle S. Kilias
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Ilka Peeken
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany MARUM - Centre for Marine Environmental Sciences, University of Bremen, Leobener Straße, 28359 Bremen, Germany
Katja Metfies
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

Abstract

We determined the composition and structure of late summer eukaryotic protist assemblages along a west–east transect in the Amundsen Sea. We used state-of-the-art molecular approaches, such as automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing, combined with pigment measurements via high performance liquid chromatography (HPLC) to study the protist assemblage. We found characteristic offshore and inshore communities. In general, total chlorophyll a and microeukaryotic contribution were higher in inshore samples. Diatoms were the dominant group across the entire area, of which Eucampia sp. and Pseudo-nitzschia sp. were dominant inshore and Chaetoceros sp. was dominant offshore. At the most eastern station, the assemblage was dominated by Phaeocystis sp. Under the ice, ciliates showed their highest and haptophytes their lowest abundance. This study delivers a taxon detailed overview of the eukaryotic protist composition in the Amundsen Sea during the summer 2010.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderkamp, A.C., Mills, M.M., van Dijken, G.L., Laan, P., Thuroczy, C.E., Gerringa, L.J.A., de Baar, H.J.W., Payne, C.D., Visser, R.J.W., Buma, A.G.J. Arrigo, K.R. 2012. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): phytoplankton characteristics and productivity. Deep-Sea Research II, 71–76, 3248.Google Scholar
Arrigo, K.R., Robinson, D.H., Worthen, D.L., Dunbar, R.B., DiTullio, G.R., VanWoert, M. Lizotte, M.P. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283, 365367.CrossRefGoogle ScholarPubMed
Barlow, R.G., Cummings, D.G. Gibb, S.W. 1997. Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Marine Ecology Progress Series, 161, 303307.Google Scholar
Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R.R. Stoeck, T. 2011. Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environmental Microbiology, 13, 340349.Google Scholar
Bidigare, R.R. 1991. Analysis of algal chlorophylls and carotenoids. Geophysical Monograph Series, 63, 119123.Google Scholar
Caron, D.A., Countway, P.D., Jones, A.C., Kim, D.Y. Schnetzer, A. 2012. Marine protistan diversity. Annual Review of Marine Science, 4, 467493.CrossRefGoogle ScholarPubMed
Diez, B., Massana, R., Estrada, M. Pedros-Alio, C. 2004. Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. Limnology and Oceanography, 49, 10221034.CrossRefGoogle Scholar
Dray, S. Dufour, A.B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 120.Google Scholar
Eddy, S.R. 2011. Accelerated profile HMM searches. Plos Computational Biology, 10.1371/journal.pcbi.1002195.Google Scholar
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 21942200.Google Scholar
Elwood, H.J., Olsen, G.J. Sogin, M.L. 1985. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata . Molecular Biology and Evolution, 2, 399410.Google Scholar
Finlay, B.J. 2002. Global dispersal of free-living microbial eukaryote species. Science, 296, 10611063.Google Scholar
Finlay, B.J. Fenchel, T. 2004. Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist, 155, 237244.CrossRefGoogle ScholarPubMed
Fragoso, G.M. Smith, W.O. 2012. Influence of hydrography on phytoplankton distribution in the Amundsen and Ross seas, Antarctica. Journal of Marine Systems, 89, 1929.CrossRefGoogle Scholar
Garibotti, I.A., Vernet, M., Ferrario, M.E., Smith, R.C., Ross, R.M. Quetin, L.B. 2003. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261, 2139.Google Scholar
Gast, R.J., Dennett, M.R. Caron, D.A. 2004. Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 70, 20282037.CrossRefGoogle ScholarPubMed
Goffart, A., Catalano, G. Hecq, J.H. 2000. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. Journal of Marine Systems, 27, 161175.Google Scholar
Gomi, Y., Umeda, H., Fukuchi, M. Taniguchi, A. 2005. Diatom assemblages in the surface water of the Indian sector of the Antarctic Surface Water in summer of 1999/2000. Polar Bioscience, 18, 115.Google Scholar
Gravalosa, J.M., Flores, J.A., Sierro, F.J. Gersonde, R. 2008. Sea surface distribution of coccolithophores in the eastern Pacific sector of the Southern Ocean (Bellingshausen and Amundsen seas) during the late austral summer of 2001. Marine Micropaleontology, 69, 1625.Google Scholar
Griffiths, H.J. 2010. Antarctic marine biodiversity - what do we know about the distribution of life in the Southern Ocean? PloS ONE, 5, e11683.Google Scholar
Hashihama, F., Hirawake, T., Kudoh, S., Kanda, J., Furuya, K., Yamaguchi, Y. Ishimaru, T. 2008. Size fraction and class composition of phytoplankton in the Antarctic marginal ice zone along the 140°E meridian during February–March 2003. Polar Science, 2, 109120.Google Scholar
Ichinomiya, M., Honda, M., Shimoda, H., Saito, K., Odate, T., Fukuchi, M. Taniguchi, A. 2007. Structure of the summer under fast ice microbial community near Syowa Station, eastern Antarctica. Polar Biology, 30, 12851293.Google Scholar
Irwin, A.J., Finkel, Z.V., Schofield, O.M.E. Falkowski, P.G. 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research, 28, 459471.Google Scholar
Ishikawa, A., Wright, S.W., van den Enden, R.L., Davidson, A.T. Marchant, H.J. 2002. Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999/2000. Polar Bioscience, 15, 1126.Google Scholar
Jeffrey, S.W., Mantoura, R.F.C. Bjornland, T. 1997. Data for the identification of 47 key phytoplankton pigments. In Jeffrey, S.W., Mantoura, R.F.C. & Wright, S.W., eds. Phytoplankton pigments in oceanography. Paris: UNESCO, 449559.Google Scholar
Jeon, S., Bunge, J., Leslin, C., Stoeck, T., Hong, S.H. Epstein, S.S. 2008. Environmental rRNA inventories miss over half of protistan diversity. Bmc Microbiology, 10.1186/1471-2180-8-222.Google Scholar
Kaiser, S., Barnes, D.K.A., Sands, C.J. Brandt, A. 2009. Biodiversity of an unknown Antarctic sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf. Marine Biodiversity, 39, 2743.Google Scholar
Kunin, V., Engelbrektson, A., Ochman, H. Hugenholtz, P. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118123.CrossRefGoogle ScholarPubMed
Lachance, M.A. 2004. Here and there or everywhere? Bioscience, 54, 884.Google Scholar
Lopez-Garcia, P., Rodriguez-Valera, F., Pedros-Alio, C. Moreira, D. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409, 603607.Google Scholar
Mackey, M.D., Mackey, D.J., Higgins, H.W. Wright, S.W. 1996. CHEMTAX - A program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144, 265283.Google Scholar
Margulies, M., Egholm, M. Altman, W.E. et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376380.Google Scholar
Matsen, F.A., Kodner, R.B. Armbrust, E.V. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. Bmc Bioinformatics, 10.1186/1471-2105-11-538.Google Scholar
McMinn, A. Hodgson, D. 1993. Summer phytoplankton succession in Ellis Fjord, Eastern Antarctica. Journal of Plankton Research, 15, 925938.CrossRefGoogle Scholar
Medlin, L., Elwood, H.J., Stickel, S. Sogin, M.L. 1988. The characterization of enzymatically amplified eukaryotic 16s-like rRNA-coding regions. Gene, 71, 491499.Google Scholar
Mills, M.M., Alderkamp, A.C., Thuroczy, C.E., van Dijken, G.L., Laan, P., de Baar, H.J.W. Arrigo, K.R. 2012. Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas. Deep-Sea Research II, 71–76, 6176.Google Scholar
Miranda, L.N., Zhuang, Y.Y., Zhang, H. Lin, S. 2012. Phylogenetic analysis guided by intragenomic SSU rDNA polymorphism refines classification of “Alexandrium tamarense” species complex. Harmful Algae, 16, 3548.CrossRefGoogle Scholar
Nickrent, D.L. Sargent, M.L. 1991. An overview of the secondary structure of the V4-region of eukaryotic small-subunit ribosomal-RNA. Nucleic Acids Research, 19, 227235.CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. Wagner, H. 2011. vegan: Community Ecology Package. R package version 1.17-6. http://cran.r-project.org.Google Scholar
Olguin, H.F. Alder, V.A. 2011. Species composition and biogeography of diatoms in Antarctic and sub-Antarctic (Argentine shelf) waters (37–76°S). Deep-Sea Research II, 58, 139152.Google Scholar
Ramette, A. 2009. Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Applied and Environmental Microbiology, 75, 24952505.Google Scholar
R Development Core Team. 2008. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org.Google Scholar
Smith, J.L., Barrett, J.E., Tusnady, G., Rejto, L. Cary, S.C. 2010. Resolving environmental drivers of microbial community structure in Antarctic soils. Antarctic Science, 22, 673680.Google Scholar
Spalding, M.D., Agostini, V.N., Rice, J. Grant, S.M. 2012. Pelagic provinces of the world: a biogeographic classification of the world's surface pelagic waters. Ocean & Coastal Management, 60, 1930.Google Scholar
Spalding, M.D., Fox, H.E., Halpern, B.S., McManus, M.A., Molnar, J., Allen, G.R., Davidson, N., Jorge, Z.A., Lombana, A.L., Lourie, S.A., Martin, K.D., McManus, E., Recchia, C.A. Robertson, J. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience, 57, 573583.CrossRefGoogle Scholar
Spreen, G., Kaleschke, L. Heygster, G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research -Oceans, 10.1029/2005JC003384.Google Scholar
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.W. Richards, T.A. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19, 2131.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S. Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A. et al., eds. PCR protocols: a guide to methods and applications. New York: Academic Press, 315322.Google Scholar
Wright, S.W., Ishikawa, A., Marchant, H.J., Davidson, A.T., van den Enden, R.L. Nash, G.V. 2009. Composition and significance of picophytoplankton in Antarctic waters. Polar Biology, 32, 797808.Google Scholar
Zhu, F., Massana, R., Not, F., Marie, D. Vaulot, D. 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. Fems Microbiology Ecology, 52, 7992.Google Scholar