Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:39:59.994Z Has data issue: false hasContentIssue false

Reassessment of ice mass balance at Horseshoe Valley, Antarctica

Published online by Cambridge University Press:  01 October 2009

Anja Wendt*
Affiliation:
Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile
Gino Casassa
Affiliation:
Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile
Andres Rivera
Affiliation:
Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile Centro de Ingeniería de la Innovación del CECS, Av. Arturo Prat 514, Valdivia, Chile Departamento de Geografía, Universidad de Chile, Marcoleta 250, Santiago, Chile
Jens Wendt
Affiliation:
Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile

Abstract

Horseshoe Valley (80°18′S, 81°22′W) is a 30 km wide glaciated valley at the south-eastern end of Ellsworth Mountains draining into the Hercules inlet, Ronne Ice Shelf. The ice at Horseshoe Valley has been considered stable; now we use Global Positioning System (GPS) measurements obtained between 1996 and 2006 to investigate ice elevation change and mass balance. Comparison of surface heights on a profile across Horseshoe Valley reveals a slight but significant elevation increase of 0.04 m a-1 ± 0.002 m a-1. The blue ice area of Patriot Hills (∼13 km2) at the mount of Horseshoe Valley shows large interannual variability in area, with a maximum extent in 1997, an exceptionally warm summer, but no clear multi-year trend, and an elevation increase of 0.05 m a-1 in eight years, which agrees with the result from Horseshoe Valley.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Jens Wendt lost his life in an airplane crash while returning from an airborne laser height survey on 6 April 2009.

References

Bamber, J.L.Payne, A.J. 2004. Mass balance of the cryosphere: observations and modelling of contemporary and future changes. Cambridge: Cambridge University Press, 644 pp.CrossRefGoogle Scholar
Bintanja, R. 1999. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37, 337359.CrossRefGoogle Scholar
Carrasco, J.F., Casassa, G.Rivera, A. 2000. A warm event at Patriot Hills, Antarctica: an ENSO related phenomenon? In Carrasco, J.F., Casassa, G. & Rivera, A., eds. Sixth International Conference on Southern Hemisphere Meteorology and Oceanography, 3–7 April 2000, Santiago, Chile. Proceedings. Boston: American Meteorological Society, 240241.Google Scholar
Casassa, G., Brecher, H.H., Cárdenas, C.Rivera, A. 1998. Mass balance of the Antarctic ice sheet at Patriot Hills. Annals of Glaciology, 27, 130134.CrossRefGoogle Scholar
Casassa, G., Rivera, A., Acuña, C., Brecher, H.H.Lange, H. 2004. Elevation change and ice flow at Horseshoe Valley, Patriot Hills, West Antarctica. Annals of Glaciology, 39, 2028.CrossRefGoogle Scholar
Davis, C.H., Li, Y., McConnell, J.R., Frey, M.M.Hanna, E. 2005. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science, 308, 18981901.CrossRefGoogle ScholarPubMed
Horwath, M., Dietrich, R., Baessler, M., Nixdorf, U., Steinhage, D., Fritzsche, D., Damm, V.Reitmayr, G. 2006. Nivlisen, an Antarctic ice shelf in Dronning Maud Land: geodetic–glaciological results from a combined analysis of ice thickness, ice surface height and ice-flow observations. Journal of Glaciology, 52, 1730.CrossRefGoogle Scholar
Ivins, E.R.James, T.S. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science, 17, 537549.CrossRefGoogle Scholar
Jacka, T.H. & the ISMASS Committee. 2004. Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Global and Planetary Change, 42, 115.Google Scholar
Joughin, I.Bamber, J.L. 2005. Thickening of the ice stream catchments feeding the Filchner–Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 32, 110.1029/2005GL023844.CrossRefGoogle Scholar
Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H.Zhang, T. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L., eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 339383.Google Scholar
Monaghan, A.J., Bromwich, D.H., Fogt, R.L., Wang, S.-H., Mayewski, P.A., Dixon, D.A., Ekaykin, A., Frezzotti, M., Goodwin, I., Isaksson, E., Kaspari, S.D., Morgan, V.I., Oerter, H., Van Ommen, T.D., Van Der Veen, C.J.Wen, J. 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831.CrossRefGoogle ScholarPubMed
Paterson, W.S.B. 1994. The physics of glaciers, 3rd ed. Pergamon Press, 480 pp.Google Scholar
Rignot, E.Thomas, R.H. 2002. Mass balance of polar ice sheets. Science, 297, 15021506.CrossRefGoogle ScholarPubMed
Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y., Van de Berg, W.J.van Meijgaard, E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.CrossRefGoogle Scholar
Rignot, E., Casassa, G., Gogineni, S., Kanagaratnam, P., Krabill, W., Pritchard, H., Rivera, A., Thomas, R., Turner, J.Vaughan, D. 2005. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophysical Research Letters, 32, 14.CrossRefGoogle Scholar
Sinisalo, A., Moore, J.C., Van de Wal, R.S.W., Bintanja, R.Jonsson, S. 2003. A 14-year mass-balance record of a blue-ice area in Antarctica. Annals of Glaciology, 37, 213218.CrossRefGoogle Scholar
Shepherd, A.Wingham, D. 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 15291532.CrossRefGoogle ScholarPubMed
Smith, B.E., Bentley, C.R.Raymond, C.F. 2005. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophysical Research Letters, 32, 10.1029/2005GL024365.CrossRefGoogle Scholar
Ulloa, D., Uribe, J.A., Zamora, R., García, G., Casassa, G.Rivera, A. 2008. A low cost VHF radar for ice thickness measurements. International Symposium on Radioglaciology and its Applications, Madrid, Spain, 9–13 June 2008. Madrid: International Glaciological Society, Abstract 51A069, 36.Google Scholar
Velicogna, I.Wahr, J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311, 17541756.CrossRefGoogle ScholarPubMed
Wessel, P.Smith, W.H.F. 1998. New, improved version of generic mapping tools released. EOS Transactions of the American Geophysical Union, 79, 579.CrossRefGoogle Scholar
Wingham, D.J., Shepherd, A., Muir, A.Marshall, G.J. 2006. Mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society, A364, 16271635.Google Scholar
Zwally, H.J., Giovinetto, M.B., Li, J., Cornejo, H.G., Beckley, M.A., Brenner, A.C., Saba, J.L.Yi, D. 2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. Journal of Glaciology, 51, 509527.CrossRefGoogle Scholar