Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T23:30:57.613Z Has data issue: false hasContentIssue false

Provisional checklist of terrestrial heterotrophic protists from Antarctica

Published online by Cambridge University Press:  07 November 2019

Andrew R. Thompson*
Affiliation:
Department of Biology, Brigham Young University, Provo, UT, USA
Gareth S. Powell
Affiliation:
Department of Biology, Brigham Young University, Provo, UT, USA
Byron J. Adams
Affiliation:
Department of Biology, Brigham Young University, Provo, UT, USA Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA

Abstract

Heterotrophic soil protists encompass lineages that are both evolutionarily ancient and highly diverse, providing an untapped wealth of scientific insight. Yet the diversity of free-living heterotrophic terrestrial protists is still largely unknown. To contribute to our understanding of this diversity, we present a checklist of heterotrophic protists currently reported from terrestrial Antarctica, for which no comprehensive evaluation currently exists. As a polar continent, Antarctica is especially susceptible to rising temperatures caused by anthropogenic climate change. Establishing a baseline for future conservation efforts of Antarctic protists is therefore important. We performed a literature search and found 236 taxa identified to species and an additional 303 taxa identified to higher taxonomic levels in 54 studies spanning over 100 years of research. Isolated by distance, climate and the circumpolar vortex, Antarctica is the most extreme continent on Earth: it is not unreasonable to think that it may host physiologically and evolutionarily unique species of protists, yet currently most species discovered in Antarctica are considered cosmopolitan. Additional sampling of the more extreme intra-continental zones will probably result in the discovery of more novel and unique taxa.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, S.M., Leander, B.S., Simpson, A.G., Archibald, J.M., Anderson, O.R., Bass, D., et al. 2007. Diversity, nomenclature, and taxonomy of protists. Systematic Biology, 56, 684689.Google Scholar
Amesbury, M.J., Roland, T.P., Royles, J., Hodgson, D.A., Convey, P., Griffiths, H., et al. 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology, 27, 10.1016/j.cub.2017.04.034.Google Scholar
Anderson, O.R. 2012. The role of bacterial-based protist communities in aquatic and soil ecosystems and the carbon biogeochemical cycle, with emphasis on naked amoebae. Acta Protozoologica, 51, 10.4467/16890027AP.12.017.0763.Google Scholar
Appeltans, W., Ahyong, S.T., Anderson, G., Angel, M.V., Artois, T., Bailly, N., 2012. The magnitude of global marine species diversity. Current Biology, 22, 10.1016/j.cub.2012.09.036.Google Scholar
Badewitz, H.J. 2004. The genus Microcorycia Cockerell, 1911 (Testacealobosia, Rhizopoda, Protozoa). A critical monograph of the genus including a first description of a new species: Microcorycia scutella n. sp. Lauterbornia, 50, 111146.Google Scholar
Bamforth, S.S., Wall, D.H. & Virginia, R.A. 2005. Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biology, 28, 10.1007/s00300-005-0006-4.Google Scholar
Boenigk, J., Pfandl, K., Garstecki, T., Harms, H., Novarino, G. & Chatzinotas, A. 2006. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Applied and Environmental Microbiology, 72, 10.1128/AEM.00601-06.Google Scholar
Bovee, E.C. 1951. A proposal for the transfer of the protozoan amoeba limicola (Rhubler), to the genus Pelomyxa. The Anatomical Record, 111, 585585.Google Scholar
Bovee, E.C. 1965. An ecological study of amebas from a small stream in northern Florida. Hydrobiologia, 25, 10.1007/BF00189855.Google Scholar
Burton-Johnson, A., Black, M., Fretwell, P.T. & Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. The Cryosphere, 10, 16651677.Google Scholar
Chao, A., Li, P.C., Agatha, S. & Foissner, W. 2006. A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents Oikos, 114, 479493.Google Scholar
Chown, S.L. & Convey, P. 2007. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society of London, B362, 10.1098/rstb.2006.1949.Google Scholar
Clarholm, M. 2005. Soil protozoa: an under-researched microbial group gaining momentum. Soil Biology and Biochemistry, 37, 10.1016/j.soilbio.2004.11.002.Google Scholar
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V., 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 84, 10.1890/12-2216.1.Google Scholar
Corliss, J.O. 2004. Why the world needs protists! Journal of Eukaryotic Microbiology, 51, 822.Google Scholar
Cotterill, F.P.D., Al-Rasheid, K. & Foissner, W. 2008. Conservation of protists: is it needed at all? Biodiversity and Conservation, 17, 10.1007/s10531-007-9261-8.Google Scholar
Couteaux, M.M. & Darbyshire, J.F. 1998. Functional diversity amongst soil protozoa. Applied Soil Ecology, 10, 229237.Google Scholar
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science, 348, 10.1126/science.1261605.Google Scholar
Dillon, R.D., Walsh, G.L. & Bierle, D.A. 1968. A preliminary survey of Antarctic meltwater and soil amoeba. Transactions of the American Microscopical Society, 87, 486492.Google Scholar
Doolittle, R.F., Feng, D.-F., Tsang, S., Cho, G. & Little, E. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 271, 470476.Google Scholar
Doran, P.T., Lyons, W.B. & McKnight, D.M. 2010. Life in Antarctic Deserts and other Cold Dry Environments: Astrobiological Analogs. Cambridge: Cambridge University Press, 300 pp.Google Scholar
Dumack, K., Mausbach, P., Hegmann, M. & Bonkowski, M. 2017. Polyphyly in the thecate amoeba genus Lecythium (Chlamydophryidae, Tectofilosida, Cercozoa), redescription of its type species L. hyalinum, description of L. jennyae sp. nov. and the establishment of Fisculla gen. nov. and Fiscullidae fam. nov. Protist, 168, 10.1016/j.protis.2017.03.003.Google Scholar
Foissner, W. 1996. Faunistics, taxonomy and ecology of moss and soil ciliates (Protozoa, Ciliophora) from Antarctica, with description of new species, including Pleuroplitoides smithi gen. n., sp. n. Acta Protozoologica, 35, 95123.Google Scholar
Foissner, W. & Korganova, G.A. 2000. The Centropyxis aerophila complex (Protozoa: Testacea). Acta Protozoologica, 39, 257273.Google Scholar
Foissner, W., Agatha, S. & Berger, H. 2002. Soil ciliates (Protozoa, Ciliophora) from Namibia (southwest Africa), with emphasis on two contrasting envrionments, the Etosha Region and the Namib Desert. Denisia, 5, 11459.Google Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M., 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 10.1017/s1464793104006542.Google Scholar
Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 10.1093/femsre/fuy006.Google Scholar
Glotova, A., Bondarenko, N. & Smirnov, A.V. 2018. High genetic diversity of amoebae belonging to the genus Mayorella (Amoebozoa, Discosea, Dermamoebida) in natural habitats. Acta Protozoologica, 57, 2942.Google Scholar
Golemansky, V. & Todorov, M. 2004. Additional data and summarized check-list on the rhizopods (Rhizopoda: Amoebida & Testacea) from Livingston Island, South Shetlands, the Antarctic. Bulgarian Antarctic Research, Life Science, 4, 8393.Google Scholar
Goodkov, A.V., Chistyakova, L.V., Seravin, L.N. & Frolov, A.O. 2004. The concept of pelobionts (Peloflagelatea class) - a brief history and current status. Entomological Review, 84, S10S20.Google Scholar
Griffin, J.L. 1988. Fine structure and taxonomic position of the giant amoeboid flagellate Pelomyxa palustris. Journal of Protozoology, 35, 10.1111/j.1550-7408.1988.tb04348.x.Google Scholar
Hada, Y. 1964. The fresh-water fauna of the protozoa in the region of the Show Station in Antarctica. Bulletin of Suzugamine Women's College, Natural Science, 11, 521.Google Scholar
Hada, Y. 1966. The freshwater fauna of the protozoa in the region of the Syowa Station in Antarctica. JARE Scientific Reports, Special Issue, 4, 209215.Google Scholar
Haentzsch, M., Schmidt, S.L., Bernhard, D., Ammermann, D., Berendonk, T.U. & Schlegel, M. 2006. A PCR-based method to distinguish the sibling species Stylonychia mytilus and Stylonychia lemnae (Ciliophora, Spirotrichea) using isocitrate dehydrogenase gene sequences. Journal of Eukaryotic Microbiology, 53, 10.1111/j.1550-7408.2006.00111.x.Google Scholar
Heldmann, J.L., Pollard, W., McKay, C.P., Marinova, M.M., Davila, A., Williams, K.E., 2013. The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars. Planetary and Space Science, 85, 10.1016/j.pss.2013.05.019.Google Scholar
Howe, A.T., Bass, D., Vickerman, K., Chao, E.E. & Cavalier-Smith, T. 2009. Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist, 160, 10.1016/j.protis.2008.11.007.Google Scholar
Hughes, K.A. & Convey, P. 2010. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environmental Change, 20, 10.1016/j.gloenvcha.2009.09.005.Google Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24, 10.1007/s10531-015-0896-6.Google Scholar
Ing, B. & Smith, R. 1983. Further myxomycete records from South Georgia and the Antarctic Peninsula. British Antarctic Survey Bulletin, 59, 8081.Google Scholar
Janetschek, H. 1963. On the terrestrial fauna of the Ross Sea area, Antarctica. Pacific Insects, 5, 305311.Google Scholar
Larsen, B.B., Miller, E.C., Rhodes, M.K. & Wiens, J.J. 2017. Inordinate fondness multiplied and redistributed: the number of species on Earth and the new pie of life. Quarterly Review of Biology, 92, 10.1086/693564.Google Scholar
Lawley, B., Ripley, S., Bridge, P. & Convey, P. 2004. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Applied and Environmental Microbiology, 70, 10.1128/AEM.70.10.5963-5972.2004.Google Scholar
Mieczan, T. & Tarkowska-Kukuryk, M. 2014. Ecology of moss dwelling ciliates from King George Island, Antarctic: the effect of environmental parameters. Polish Polar Research, 35, 10.2478/popore–2014–0026.Google Scholar
Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B. & Worm, B. 2011. How many species are there on Earth and in the ocean? PLoS Biology, 9, e1001127.Google Scholar
Nielsen, U.N. & Wall, D.H. 2013. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters, 16, 10.1111/ele.12058.Google Scholar
Park, K.M., Jung, J.H., Min, G.S. & Kim, S. 2017. Pseudonotohymena antarctica n. g., n. sp. (Ciliophora, Hypotricha), a new species from Antarctic soil. Journal of Eukaryotic Microbiology, 64, 10.1111/jeu.12381.Google Scholar
Park, K.M., Min, G.S. & Kim, S. 2018. Morphology and phylogeny of a new species, Uroleptus (Caudiholosticha) antarctica n. sp. (Ciliophora, Hypotricha) from Greenwich Island in Antarctica. Zootaxa, 4483, 10.11646/zootaxa.4483.3.10.Google Scholar
Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., 2012. CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology, 10, e1001419.Google Scholar
Penard, E. 1911. Sarcodina. Rhizopodes d'eau douce. London: W. Heinemann, 260 pp.Google Scholar
Petz, W. 1997. Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land Antarctica. Polar Biology, 18, 10.1007/s003000050156.Google Scholar
Petz, W. & Foissner, W. 1997. Morphology and infraciliature of some soil ciliates (Protozoa, Ciliophora) from continental Antarctica, with notes on the morphogenesis of Sterkiella histriomuscorum. Polar Record, 33, 307326.Google Scholar
Petz, W., Valbonesi, A., Schiftner, U., Quesada, A. & Cynan Ellis-Evans, J. 2007. Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species? FEMS Microbiology Ecology, 59, 10.1111/j.1574-6941.2006.00259.x.Google Scholar
Putzke, J., Pereira, A.B. & Terezinha Lopes, M. 2004. A new record of myxomycetes to the Antarctic. In Actas del V Simposio Argentino y I Latinoamericano de Investigaciones Antarticas. Buenos Aires: IAA, 14.Google Scholar
Richters, F. 1907. Die Fauna der Moosrasen des Gaussberges und einiger südlicher Inseln. Deutsche Südpolar-Expedition 1901–1903, 1, 259302.Google Scholar
Richters, F. 1908. Moosbewohner. Wissenschaftliche Ergebnisse Schwedischen Südpolar-Expedition, 6, 116.Google Scholar
Rogers, A.D. 2007. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philosophical Transactions of the Royal Society of Lond. Series B, Biological Science, 362, 10.1098/rstb.2006.1948.Google Scholar
Roland, T.P., Amesbury, M.J., Wilkinson, D.M., Charman, D.J., Convey, P., Hodgson, D.A., 2017. Taxonomic implications of morphological complexity within the testate amoeba genus Corythion from the Antarctic Peninsula. Protist, 168, 10.1016/j.protis.2017.07.006.Google Scholar
Rønn, R., Vestergård, M. & Ekelund, F. 2012. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozoologica, 51, 10.4467/16890027AP.12.018.0764.Google Scholar
Royles, J., Amesbury, M.J., Roland, T.P., Jones, G.D., Convey, P., Griffiths, H., 2016. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula. Oecologia, 181, 10.1007/s00442-016-3608-3.Google Scholar
Sandon, H. & Cutler, D.W. 1924. Some protozoa from the soils collected by the Quest Expedition (1921–1922). Journal of the Linnean Society, 36, 112.Google Scholar
Smirnov, A.V. & Brown, S. 2004. Guide to the methods of study and identification of soil gymnamoebae. Protistology, 3, 148190.Google Scholar
Smith, H.G. 1972. The terrestrial protozoa of Elephant Island. British Antarctic Survey Bulletin, 31, 5562.Google Scholar
Smith, H.G. 1974. The colonization of volcanic tephra on Deception Island by protozoa. British Antarctic Survey Bulletin, 38, 4958.Google Scholar
Smith, H.G. 1978. Distribution and Ecology of Terrestrial Protozoa of Sub-Antarctic and Maritime Antarctic Islands. British Antarctic Survey Scientific Reports, 95. Swindon: National Environment Research Council, 104 pp.Google Scholar
Smith, H.G. 1992. Distribution and ecology of the testate rhizopod fauna of the continental Antarctic Zone. Polar Biology, 12, 629634.Google Scholar
Smith, H.G. 1996. Diversity of Antarctic terrestrial protozoa. Biodiversity and Conservation, 5, 10.1007/BF00051984.Google Scholar
Stephenson, S.L., Laursen, G.A. & Seppelt, R.D. 2007. Myxomycetes of subantarctic Macquarie Island. Australian Journal of Botany, 55, 439449.Google Scholar
Sudzuki, M. 1964. On the microfauna of the Antarctic region, I. Moss-water community at langhovde. Japanese Antarctic Research Expedition Scientific Report, 1–41.Google Scholar
Sudzuki, M. 1979. On the microfauna of the Antarctic region. III. Microbiota of the terrestrial interstices. Japanese Antarctic Research Expedition Scientific Report, 104–126.Google Scholar
Terauds, A. & Lee, J.R. 2016. Antarctic biogeography revisited - updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22, 10.1111/ddi.12453.Google Scholar
Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., 2012. Conservation biogeography of the Antarctic. Diversity and Distributions, 18, 726741.Google Scholar
Todorov, M. & Golemansky, V. 1996. Notes on testate amoebae (Protozoa: Rhizopoda) from Livingston Island, South Shetland Islands, Antarctic. Bulgarian Antarctic Research Life Sciences, 1, 7081.Google Scholar
Tyml, T., Skulinova, K., Kavan, J., Ditrich, O., Kostka, M. & Dykova, I. 2016. Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. European Journal of Protistology, 56, 10.1016/j.ejop.2016.08.003.Google Scholar
Venter, P.C., Nitsche, F. & Arndt, H. 2018. The hidden diversity of flagellated protists in soil. Protist, 169, 10.1016/j.protis.2018.04.007.Google Scholar
Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D.A., Willems, A., Peeters, K., 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4, 10.1016/j.polar.2010.03.006.Google Scholar
Whatley, J.M. & Chapman, A.C. 1990. Phylum Karyoblastea. In Corliss, J.O., Melkonian, M. & Chapman, D.J., eds. Handbook of Protoctista. Boston, MA: Jones & Bartlett, 167185.Google Scholar
Wilkinson, D.M., Creevy, A.L. & Valentine, J. 2012. The past, present and future of soil protist ecology. Acta Protozoologica, 51, 10.4467/16890027AP.12.015.0761.Google Scholar
Supplementary material: File

Thompson et al. supplementary material

Thompson et al. supplementary material

Download Thompson et al. supplementary material(File)
File 21.5 KB