Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T18:11:04.510Z Has data issue: false hasContentIssue false

Potential source regions of biogenic aerosol number concentration apportioning at King George Island, Antarctic Peninsula

Published online by Cambridge University Press:  23 June 2010

Alexandre S. Alencar*
Affiliation:
Laboratório de Radioecologia e Mudanças Globais, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC - Subsolo, Maracanã, 20550-013 RJ, Brazil
Heitor Evangelista
Affiliation:
Laboratório de Radioecologia e Mudanças Globais, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC - Subsolo, Maracanã, 20550-013 RJ, Brazil
Elaine A. Dos Santos
Affiliation:
Laboratório de Radioecologia e Mudanças Globais, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC - Subsolo, Maracanã, 20550-013 RJ, Brazil
Sergio M. Correa
Affiliation:
Universidade do Estado do Rio de Janeiro, Departamento de Química Ambiental, Faculdade de Tecnologia, Rodovia Presidente Dutra, km 298, Resende, 27537-000 RJ, Brazil
Myriam Khodri
Affiliation:
UR Paleotropique, Institut de Recherche pour le Développement, 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France/Laboratoire des Science du Climat et Environnement (LSCE), Gif-sur-Yvette, France
Virginia M.T. Garcia
Affiliation:
Fundação Universidade Federal do Rio Grande, Departamento de Oceanografia, Lab. Ecology of Phytoplankton and Marine Microorganisms, Av. Itália, km 8, Rio Grande, 96201-900 RS, Brazil
Carlos A.E. Garcia
Affiliation:
Fundação Universidade Federal do Rio Grande, Departamento de Física, Laboratório de Oceanografia Física, Av. Itália, km 8, Rio Grande, 96201-900 RS, Brazil
Enio B. Pereira
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Departamento de Geofísica Espacial, Av. dos Astronautas 1758, Cx. Postal 515, 12201-970 São José dos Campos, SP, Brazil
Alberto R. Piola
Affiliation:
Departamento Oceanografía, Servicio Hidrografía Naval and Departamento de Ciencias de la Atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Avenida Montes de Oca 2124, Buenos Aires, Argentina
Israel Felzenszwalb
Affiliation:
Laboratório de Radioecologia e Mudanças Globais, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC - Subsolo, Maracanã, 20550-013 RJ, Brazil

Abstract

Nowadays it is well accepted that background aerosols in the boundary layer over remote oceans are of marine origin and not aged continental. Particularly in the Atlantic sector of the Southern Ocean at least four main important regions exhibit significant ocean primary productivity. They are the Bellingshausen–Amundsen Sea, the Weddell Sea, the southern Argentinean shelf and the southern Chilean coast. In this work, we have combined ground-based continuous atmospheric sampling of aerosol number concentration (ANC), over-sea dimethyl sulphide (DMS) measurements, chlorophyll a (chl a) concentration provided by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite images, in situ meteorological data and monthly regional NCEP-NCAR re-analysis wind fields in order to investigate the relative contribution of each of the above regions to the apportionment of the ANC at King George Island (KGI), South Shetland Islands. Our results suggest that, at least during the period from September 1998–December 1999, the southern Argentinean shelf acted as the main contributor to the ANC measured in KGI.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreae, M.O.Crutzen, P.J. 1997. Atmospheric aerosols: biochemical sources and role in the atmospheric chemistry. Science, 276, 10521058.CrossRefGoogle Scholar
Arrigo, K.R., DiTullio, G.R., Dunbar, R.B., Robinson, D.H., van Woert, M., Worthen, D.L.Lizotte, M.P. 2000. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research - Oceans, 105, 88278846.CrossRefGoogle Scholar
Braun, M., Saurer, H.Goßmann, H. 2004. Climate, energy fluxes and ablation rates on the icecap of King George Island. Brazilian Antarctic Research, 4, 87103.Google Scholar
Charlson, R.J., Lovelock, J.E., Andreae, M.O.Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655661.CrossRefGoogle Scholar
Correia, A.L., Artaxo, P.Maenhaut, W. 1998. Monitoring of atmospheric aerosol particles on the Antarctic Peninsula. Annals of Glaciology, 27, 560564.CrossRefGoogle Scholar
Crocker, K.M., Ondrusek, M.E., Petty, R.L.Smith, R.C. 1995. Dimethyl sulphide, algal pigments and light in an Antarctic Phaeocystis sp. bloom. Marine Biology, 124, 335340.CrossRefGoogle Scholar
Dalia, K.C., Evangelista, H., Simões, J.C.Pereira, E.B. 2004. Sazonalidade de aerossóis atmosféricos e microanálise individual por EDS em testemunho de gelo da ilha Rei George. Brazilian Antarctic Research, 4, 2536.Google Scholar
Davison, B., O’Dowd, C., Hewitt, C.N., Smith, M.H., Harrison, R.M., Peel, D.A., Wolff, E.W., Mulvaney, R., Schwikowski, M.Baltensperger, U. 1996. Dimethyl sulphide and its oxidation products in the atmosphere of the Atlantic and Southern oceans. Atmospheric Environment, 30, 18951906.CrossRefGoogle Scholar
DiTullio, G.R., Grebmeier, J.M., Arrigo, K.R., Lizotte, M.P., Robinson, D.H., Leventer, A., Barry, J.B., van Woert, M.L.Dunbar, R.B. 2000. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature, 404, 595598.CrossRefGoogle ScholarPubMed
Evangelista, H.Pereira, E.B. 2002. Radon flux at King George Island, Antarctic Peninsula. Journal of Environmental Radioactivity, 61, 283304.CrossRefGoogle Scholar
Evangelista, E., Maldonado, J., Dos Santos, E.A., Godoi, R.H.M., Garcia, C.A.E., Garcia, V.M.T., Jonhson, E., Dias da Cunha, K., Leite, C.B., van Grieken, R., van Meel, K., Makarovska, Y.Gaiero, D.M. 2010. Inferring episodic atmospheric iron fluxes in the western South Atlantic. Atmospheric Environment, 44, 703712.CrossRefGoogle Scholar
Ferron, F.A., Simões, J.C., Aquino, F.E.Setzer, A.W. 2004. Air temperature time series for King George Island, Antarctica. Brazilian Antarctic Research, 4, 155169.Google Scholar
Fitzgerald, J.W. 1991. Marine aerosols: a review. Atmospheric Environment, 25, 533545.CrossRefGoogle Scholar
Garcia, C.A.E., Garcia, V.M.T.McClain, C.R. 2005. Evaluation of SeaWiFS chlorophyll algorithms in the south-western Atlantic and Southern Oceans. Remote Sensing of Environment, 95, 125137.CrossRefGoogle Scholar
Garibotti, I.A., Vernet, M., Ferrario, M.E., Smith, R.C., Ross, R.M.Quetin, L.B. 2003. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261, 2139.CrossRefGoogle Scholar
Gayoso, M.A. 2001. Observations on Alexandrium tamarense (Lebour) Balech and other dinoflagellate populations in Golfo Nuevo, Patagonia (Argentina). Journal of Plankton Research, 23, 463468.CrossRefGoogle Scholar
Gloersen, P., Campbell, W.J., Cavalieri, D.J., Comiso, J.C., Parkinson, C.L.Zwally, H.J. 1992. Arctic and Antarctic sea ice, 1978–1987: satellite passive-microwave observations and analysis. Washington, DC: National Aeronautics and Space Administration, 290 pp.Google Scholar
Holm-Hansen, O., Naganobu, M., Kawaguchi, S., Kameda, T., Krasovski, I., Tchernyshkov, P., Priddle, J., Korb, R., Brandon, M., Demer, D., Hewitt, R.P., Kahru, M.Hewes, C.D. 2004. Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters. Deep-Sea Research I, 51, 13331350.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R.Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437471.2.0.CO;2>CrossRefGoogle Scholar
Kettle, A.J.Andreae, M.O. 2000. Flux of dimethyl sulphide from the oceans: a comparison of updated dataset and flux models. Journal of Geophysical Research, 105, 2679326808.CrossRefGoogle Scholar
Kirkevag, A., Iversen, T.Dahlback, A. 1999. On radiative effects of black carbon and sulfate aerosols. Atmospheric Environment, 33, 26212635.CrossRefGoogle Scholar
Kistler, R.E., Kalnay, W., Collins, S., Saha, G., White, J., Woollen, M., Chelliah, W., Ebisuzaki, M., Kanamitsu, V., Kousky, H., van den Dool, J.R.Fiorino, M. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82, 247268.2.3.CO;2>CrossRefGoogle Scholar
Kloster, S., Feichter, J., Maier-Reimer, E., Six, D., Stier, P.Wetzel, P. 2005. DMS cycle in the marine ocean-atmosphere system - a global model study. Biogeosciences Discussions, 2, 10671126.Google Scholar
Langmann, B., Herzog, M.Graf, H.-F. 1998. Radiative forcing of climate by sulphate aerosols as determined by a regional circulation chemistry transport model. Atmospheric Environment, 32, 27572768.CrossRefGoogle Scholar
Lizotte, M.P. 2001. The contribution of sea ice algae to Antarctic marine primary production. American Zoology, 41, 5773.Google Scholar
Maring, H.Schwartze, G. 1994. A condensation particle counter for long-term continuous use in the remote marine environment. Atmospheric Environment, 28, 32933298.CrossRefGoogle Scholar
McConnell, J.R., Aristarain, A.J., Banta, J.R., Edwards, P.R.Simões, J.C. 2007. 20th-century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proceedings of the National Academy of Science of the United States of America, 104, 57435748.CrossRefGoogle Scholar
Moore, J.K.Abbott, M.R. 2000. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. Journal of Geophysical Research, 105, 2870928722.CrossRefGoogle Scholar
Pabi, S.Arrigo, K.R. 2006. Satellite estimation of marine particulate organic carbon in waters dominated by different phytoplankton taxa. Journal of Geophysical Research, 111, 10.1029/2005JC003137.CrossRefGoogle Scholar
Pereira, E.B. 1990. Radon-222 time series measurements in the Antarctic Peninsula (1986–1987). Tellus, 42B, 3945.CrossRefGoogle Scholar
Pereira, E.B., Evangelista, H., Pereira, K.C.D.Setzer, A.W. 2006. Apportionment of black carbon in the South Shetland Islands, Antarctic Peninsula. Journal of Geophysical Research - Atmospheres, 111, art. no. DO3303.CrossRefGoogle Scholar
Read, K.A., Lewis, A.C., Bauguitte, S., Rankin, A.M., Salmon, R.A., Wolff, E.W., Saiz-Lopez, A., Bloss, W.J., Heard, D.E., Lee, J.D.Plane, J.M.C. 2008. DMS and MSA measurements in the Antarctic boundary layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics Discussion, 8, 26572694.Google Scholar
Rivas, A.L. 2006. Quantitative estimation of the influence of surface thermal fronts over chlorophyll concentration at the Patagonian shelf. Journal of Marine Systems, 63, 183190.CrossRefGoogle Scholar
Rivas, A.L., Dogliotti, A.I.Gagliardini, D.A. 2006. Seasonal variability in satellite-measured surface chlorophyll in the Patagonian shelf. Continental Shelf Research, 26, 703720.CrossRefGoogle Scholar
Romero, S.I., Piola, A.R., Charo, M.Garcia, C.A.E. 2006. Chlorophyll-alpha variability of Patagonia based on SeaWiFS data. Journal of Geophysical Research - Oceans, 111, 10.1029/2005JC003244.CrossRefGoogle Scholar
Saraceno, M., Provost, C.Piola, A.R. 2005. On the relationship between satellite-retrieved surface temperature fronts and chlorophyll-a in the western South Atlantic. Journal of Geophysical Research - Oceans, 110, 11010.11029/12004JC002736.CrossRefGoogle Scholar
Setzer, A.W.Harter, F. 2004. Estudo das temperaturas mínimas de julho 1995 na Estação Antártica Comandante Ferraz, Ilha Rei George. Brazilian Antarctic Research, 4, 171181.Google Scholar
Signorini, S.R., Garcia, V.M.T., Piola, A.R., Garcia, C.A.E., Mata, M.M.McClain, C.R. 2006. Seasonal and interannual variability of calcite in the vicinity of the Patagonian shelf break. Geophysical Research Letters, 33, 10.1029/2006GL026592.CrossRefGoogle Scholar
Toro, J.E., Paredes, P.I.Villagra, D.J. 1999. Phytoplankton distribution and oyster, Ostrea chilensis (Philippi, 1845), growth at Putemun Channel, southern Chile. New Zealand Journal of Marine and Freshwater Research, 33, 499513.CrossRefGoogle Scholar
Turner, J. 2004. The El Niño–Southern Oscillation and Antarctica. International Journal of Climatology, 24, 131.CrossRefGoogle Scholar
Turner, S.M., Nightingale, P.D., Broadgate, W.Liss, P.S. 1995. The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep-Sea Research II, 42, 10591080.CrossRefGoogle Scholar
Vallina, S.M., Simó, R.Gassó, S. 2006. What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall. Global Biogeochemical Cycles, 20, 10.1029/2005GB002597.CrossRefGoogle Scholar
Vallina, S.M., Simó, R., Gassó, S., De Boyer-Montégut, C., Del Río, E., Jurado, E.Dachs, J. 2007. Analysis of a potential ‘solar radiation dose–dimethyl sulphide–cloud condensation nuclei’ link from globally mapped seasonal correlations. Global Biogeochemical Cycles, 21, 10.1029/2006GB002787.CrossRefGoogle Scholar
Woodhouse, M.T., Mann, G.W.Carslaw, K.S. 2008. New directions: the impact of oceanic iron fertilisation on cloud condensation nuclei. Atmospheric Environment, 42, 57285730.CrossRefGoogle Scholar