Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T17:40:30.058Z Has data issue: false hasContentIssue false

Postglacial evolution of marine and lacustrine water bodies in Bunger Hills

Published online by Cambridge University Press:  27 February 2020

Sonja Berg*
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Germany
Martin Melles
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Germany
Damian B. Gore
Affiliation:
Department of Earth and Environmental Sciences, Macquarie University, NSW2109, Australia
Sergei Verkulich
Affiliation:
Arctic and Antarctic Research Institute, St Petersburg, Russia
Zina V. Pushina
Affiliation:
Arctic and Antarctic Research Institute, St Petersburg, Russia

Abstract

Unglaciated coastal areas in East Antarctica provide records of past ice sheet and glacier fluctuations and subsequent environmental conditions. In this paper we review lithological, geochemical, diatom and radiocarbon data from sediment records from inland and epishelf lakes in Bunger Hills, East Antarctica. While some hilltops were unglaciated during the Last Glacial Maximum, till deposits in lake basins indicate infilling by glacier ice prior to the Holocene. Proglacial sedimentation occurred in lakes during the early Holocene. Around 9.6 ka bp, deposition of marine sapropel started under relatively warm climate conditions. Inland lakes were affected by high clastic input from meltwater runoff until c. 7.9 ka bp, when deposition became highly organic and biogenic proxies indicate a period of cooler conditions. Epishelf lakes experienced a decrease in water exchange with the ocean and increased freshwater input around 7.7 ± 0.2 ka bp and after 2.2 ka bp. This probably resulted from grounding line advances of the bounding glaciers, which could be either controlled by relative sea level (RSL) lowering and/or climate-driven glacier dynamics. The absence of marine sediments in the postglacial record of Algae Lake indicates that Holocene RSL probably reached a maximum at or below 10 m above present sea level.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, D.A. & Colhoun, E.A. 1992. Late Quaternary glaciation and deglaciation of the Bunger Hills, Antarctica. Antarctic Science, 4, 435446.CrossRefGoogle Scholar
Augustinus, P.C. 2002. Weathering characteristics of the glacial drifts, Bunger Hills, East Antarctica. Arctic, Antarctic, and Alpine Research, 34, 6575.CrossRefGoogle Scholar
Berg, S., Leng, M.J., Kendrick, C.P., Cremer, H. & Wagner, B. 2013. Bulk sediment and diatom silica carbon isotope composition from coastal marine sediments off East Antarctica. Silicon, 5, 1934.CrossRefGoogle Scholar
Berg, S., White, D.A., Bennike, O., Fülöp, R.H., Fink, D., Wagner, B. & Melles, M. 2016. Unglaciated areas in East Antarctica during the Last Glacial (Marine Isotope Stage 3) – new evidence from Rauer Group. Quaternary Science Reviews, 153, 110.CrossRefGoogle Scholar
Berkman, P.A. & Forman, S.L. 1996. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophysical Research Letters, 23, 633636.CrossRefGoogle Scholar
Blaauw, M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512518.CrossRefGoogle Scholar
Bramley-Alves, J., Wankek, W., French, K. & Robinson, S.A. 2015. Moss δ 13C: an accurate proxy for past water environments in polar regions. Global Change Biology, 21, 24542464.CrossRefGoogle Scholar
Bolshiyanov, D., Verkulich, S.R., Klokov, V. & Arslanov, H. 1991. Some features of the late Pleistocene and Holocene history of the Bunger Hills (East Antarctica). Abstracts Sixth International Symposium on Antarctic Earth Sciences. National Institute of Polar Research, Japan, 6671.Google Scholar
Cremer, H., Gore, D., Melles, M. & Roberts, D. 2003. Palaeoclimatic significance of late Quaternary diatom assemblages from the southern Windmill Islands, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 261280.CrossRefGoogle Scholar
Crosta, X., Crespin, J., Swingedouw, D., Marti, O., Masson-Delmotte, V., Etourneau, J., Goosse, H., Braconnot, P., Yam, R., Brailovski, I. & Shemesh, A. 2018. Ocean as the main driver of Antarctic ice sheet retreat during the Holocene. Global and Planetary Change, 166, 6274.CrossRefGoogle Scholar
Colhoun, E.A. & Adamson, D.A. 1989. Former glacial lakes of the Bunger Hills, Antarctica. Australian Geographer, 20, 125136.CrossRefGoogle Scholar
Colhoun, E.A. & Adamson, D.A. 1992. Raised beaches of the Bunger Hills, Antarctica. ANARE Reports, 136, 47 pp.Google Scholar
Denis, D., Crosta, C., Barbara, L., Massé, G., Renssen, H., Ther, O. & Giraudeau, J. 2010. Sea ice and wind variability during the Holocene in East Antarctica: insight on middle-high latitude coupling. Quaternary Science Reviews, 29, 37093719.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Meyer, M.A., Andersen, D.T., Wharton, R.A. & Hastings, J.T. 1996. Climatology and implications for perennial lake ice occurrence at Bunger Hills Oasis, East Antarctica. Antarctic Science, 8, 289296.CrossRefGoogle Scholar
Doran, P.T., Wharton, R.A., Des Marais, D.J. & McKay, C.P. 1998. Antarctic paleolake sediments and the search for extinct life on Mars. Journal of Geophysical Research, 103, 2848128493.CrossRefGoogle Scholar
Doran, P.T., Wharton, R.A., Lyons, W.B., Des Marais, D.J. & Andersen, D.T. 2000. Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarctic Science, 12, 131140.CrossRefGoogle ScholarPubMed
Fitzsimons, S.J. & Colhoun, E.A. 1995. Form structure and stability of the Antarctic ice sheet, Vestfold Hills and Bunger Hills, East Antarctica. Antarctic Science, 7, 171179.CrossRefGoogle Scholar
Gibson, J.A.E., Gore, D.B. & Kaup, E. 2002. Algae River: an extensive drainage system in the Bunger Hills, East Antarctica. Polar Record, 38, 141152.CrossRefGoogle Scholar
Gibson, J.A.E, Roberts, D. & Van de Vijer, B. 2006. Salinity control of the distribution of diatoms in lakes of the Bunger Hills, East Antarctica. Polar Biology, 29, 694704.CrossRefGoogle Scholar
Gibson, J.A.E., Paterson, K.S., White, C.A. & Swadling, K.M. 2009. Evidence for the continued existence of Abraxas Lake, Vestfold Hills, East Antarctica during the Last Glacial Maximum. Antarctic Science, 21, 269278.CrossRefGoogle Scholar
Gore, D.B., Rhodes, E.J., Augustinus, P.C., Leishman, M.R., Colhoun, E.A. & Rees-Jones, J. 2001. Bunger Hills, East Antarctica: Ice free at the Last Glacial Maximum? Geology, 29, 11031106.2.0.CO;2>CrossRefGoogle Scholar
Gore, D.B. & Leishman, M.R. 2020. Tafoni show postglacial and modern wind azimuths that are similar at Bunger Hills. Antarctic Science, 32, 10.1017/S095410201900035X.Google Scholar
Hodgson, D.A., Whitehouse, P.L., DeCort, G., Berg, S., Verleyen, E., Tavernier, I., Roberts, S.J., Vyverman, W., Sabbe, K. & O'Brien, P. 2016. Rapid early Holocene sea-level rise in Prydz Bay, East Antarctica. Global and Planetary Change, 139, 128140.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Buck, C.E., Guilderson, T.P., Heaton, T.J., Niu, M., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M. & Zimmerman, S.R.H. 2013. Shcal13 southern hemisphere calibration, 0–50 000 years cal bp. Radiocarbon, 55, 18891903.CrossRefGoogle Scholar
Kaup, E., Haendel, D. & Vaikmäe, R. 1993. Limnological features of the saline lakes of the Bunger Hills (Wilkes Land, Antarctica). Antarctic Science, 5, 4150.CrossRefGoogle Scholar
Kirkup, H., Melles, M. & Gore, D.B. 2002. Late Quaternary environment of southern Windmill Islands, East Antarctica. Antarctic Science 14, 385394.CrossRefGoogle Scholar
Klokov, V., Kaup, E., Zierath, R. & Haendel, D. 1990. Lakes of the Bunger Hills (East Antarctica): chemical and ecological properties. Polish Polar Research 11, 147159.Google Scholar
Kudoh, S., Tsuchiya, Y., Aykawa, E., Imura, S. & Kanda, H. 2003. Ecological studies of aquatic moss pillars in Antarctic lakes. 1. Macro structure and carbon, nitrogen and chlorophyll a contents. Polar Bioscience 16, 1122.Google Scholar
Kulbe, T. 1997. The late Quaternary climatic and environmental history of Bunger Oasis, East Antarctica. Reports on Polar Research, 254, 130 pp.Google Scholar
Kulbe, T., Melles, M., Verkulich, S.R. & Pushina, Z.V. 2001. East Antarctic climate and environmental variability over the last 9400 years inferred from marine sediments in the Bunger Oasis. Arctic, Antarctic and Alpine Research, 33, 223230.CrossRefGoogle Scholar
Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E., Brachfeld, S., Manley, P. & McClennen, C. 2006. Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today, 16, 410.CrossRefGoogle Scholar
Melles, M., Verkulich, S. & Hermichen, W.-D. 1994a. Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Science, 6, 375378.CrossRefGoogle Scholar
Melles, M., Kulbe, T., Overduin, P.P. & Verkulich, S. 1994b. The expedition Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. Reports on Polar and marine Research, 148, 2780.Google Scholar
Melles, M., Kulbe, T., Verkulich, S., Pushina, Z. & Hubberten, H.-W. 1997. Late Pleistocene and Holocene environmental history of Bunger Hills, East Antarctica, as revealed by fresh-water and epishelf lake sediments. In Ricci, C.A., ed. The Antarctic region: geological evolution and processes. Siena, Italy: Terra Antarctica Publications, 809820.Google Scholar
Petrou, K. & Ralph, P.J. 2011. Photosynthesis and net primary productivity in three Antarctic diatoms: possible significance for their distribution in the Antarctic marine ecosystem. Marine Ecology Progress Series, 437, 2740.CrossRefGoogle Scholar
Poleschuk, K.V. & Verkulich, S.R. 2014 Reconstruction of Holocene relative sea-level changes in the Bunger oasis region (East Antarctica). Problems of Arctic and Antarctic, 2, 1524. [in Russian].Google Scholar
Priddle, J. & Heywood, R.B. 1980. Evolution of Antarctic lake ecosystems. Biological Journal of the Linnean Society, 14, 5166.CrossRefGoogle Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., et al. 2013. INTCAL13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon, 55, 18691887.CrossRefGoogle Scholar
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.J. & Morloghem, M. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. PNAS, 116, 10951103.CrossRefGoogle ScholarPubMed
Roberts, D. & McMinn, A. 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. Journal of Paleolimnology, 19, 99113.CrossRefGoogle Scholar
Roberts, D., McMinn, A. & Zwartz, D. 2000. An initial palaeosalinity history of Jaw Lake, Bunger Hills based on a diatom-salinity transfer function applied to sediment cores. Antarctic Science, 12, 172176.CrossRefGoogle Scholar
Verkulich, S.R & Hiller, J. 1994. Holocene deglaciation of the Bunger Hills revealed by 14C measurements on stomach oil deposits in snow petrel colonies. Antarctic Science, 6, 395399.CrossRefGoogle Scholar
Verkulich, S.R., Melles, M., Hubberten, H.-W. & Pushina, Z.V. 2002. Holocene environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica. Journal of Paleolimnology, 28, 253267.CrossRefGoogle Scholar
Verkulich, , 2007. Reconstruction of Holocene climate changes in the coastal zone of East Antarctica based on a study of bottom deposits of the lakes and marine bays. Izvestia RAN Geographical Series, 4, 3843. [in Russian].Google Scholar
Verkulich, S.R., Pushina, Z.V., Sokratova, I.N., Melles, M., Hultsch, N. & Diekmann, B. 2007. Changes in sea level and glacio-isostasia on the Antarctic coast in the Holocene. Data on Glaciological Studies, 102, 2331. [in Russian].Google Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., Cremer, H., Emslie, S.D., Gibson, J., et al. 2011. Post-glacial regional climate variability along the East Antarctic coastal margin - evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104, 199212.CrossRefGoogle Scholar
Yangyang, W., Jing, J., Yaguang, N., Xin, C., Libin, W., Pingqing, F., Xiaodong, L. & Emslie, S.D. 2016. Sources of organic matter and paleo-environmental implications inferred from carbon isotope compositions of lacustrine sediments at Inexpressible Island, Ross Sea, Antarctica. Advances in Polar Science, 27, 233244.Google Scholar