Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T22:27:17.641Z Has data issue: false hasContentIssue false

Phylogeny of Trematomus (Notothenioidei: Nototheniidae) inferred from mitochondrial and nuclear gene sequences

Published online by Cambridge University Press:  01 December 2009

Kristen L. Kuhn*
Affiliation:
Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
Thomas J. Near
Affiliation:
Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA

Abstract

The biota of Antarctica is amazingly rich and highly endemic. The phylogenetics of notothenioid fishes has been extensively investigated through analyses of morphological characters, DNA sequences from mitochondrial genes, and single copy nuclear genes. These phylogenetic analyses have produced reasonably similar phylogenetic trees of notothenioids, however a number of phylogenetic questions remain. The nototheniid clade Trematomus is an example of a group where phylogenetic relationships remain unresolved. In this paper we revisit the phylogenetic relationships of Trematomus using both increased taxon sampling and an expanded dataset which includes DNA sequences from two mitochondrial genes (ND2 and 16S rRNA) and one single-copy nuclear gene (RPS7). The Bayesian phylogeny resulting from the analysis of the combined mitochondrial and nuclear gene datasets was well resolved and contained more interspecific nodes supported with significant Bayesian posteriors than either the mitochondrial or nuclear gene phylogenies alone. This demonstrates that the addition of nuclear gene sequence data to mitochondrial data can enhance phylogenetic resolution and increase node support. Additionally, the results of the combined mitochondrial and nuclear Bayesian analyses provide further support for the inclusion of species previously classified as Pagothenia and Cryothenia in Trematomus.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balushkin, A.V. 1982. Classification of the trematomin fishes of Antarctica. In Kafanov, A.I., ed. Biology of the shelf zones of the World Ocean. Vladivostok: USSR Academy of Sciences Far East Center, 910.Google Scholar
Balushkin, A.V. 1992. Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). Journal of Ichthyology, 32, 90110.Google Scholar
Balushkin, A.V. 2000. Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). Journal of Ichthyology, 40, S74S109.Google Scholar
Bargelloni, L.Lecointre, G. 1998. Four years in notothenioid systematics; a molecular perspective. In Di Prisco, G., Pisano, E. & Clarke, A., eds. Fishes of Antarctica: a biological overview. Milan: Springer, 259273.CrossRefGoogle Scholar
Bargelloni, L., Zane, L., Derome, N., Lecointre, G.Patarnello, T. 2000. Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarctic Science, 12, 259268.CrossRefGoogle Scholar
Bargelloni, L., Ritchie, P.A., Patarnello, T., Battaglia, B., Lambert, D.M.Meyer, A. 1994. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Molecular Biology and Evolution, 11, 854863.Google ScholarPubMed
Chen, L., DeVries, A.L.Cheng, C.-H.C. 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences of the United States of America, 94, 38113816.CrossRefGoogle ScholarPubMed
Cheng, C.-H.C., Chen, L.B., Near, T.J.Jin, Y.M. 2003. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Molecular Biology and Evolution, 20, 18971908.CrossRefGoogle ScholarPubMed
Chow, S.Hazama, K. 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology, 7, 12551256.Google ScholarPubMed
Clarke, A.Johnston, I.A. 1996. Evolution and adaptive radiation of Antarctic fishes. Trends in Ecology and Evolution, 11, 212218.CrossRefGoogle ScholarPubMed
Cziko, P.Cheng, C.-H.C. 2006. A new species of Nototheniid (Perciformes: Notothenioidei) fish from McMurdo Sound, Antarctica. Copeia, 4, 752759.CrossRefGoogle Scholar
Derome, N., Chen, W.-J., Dettai, A., Bonillo, C.Lecointre, G. 2002. Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Molecular Phylogenetics and Evolution, 24, 139152.CrossRefGoogle ScholarPubMed
DeWitt, H.H. 1971. Coastal and deep-water benthic fishes of the Antarctic. In Bushnell, V.C.,ed. Antarctic map folio series, folio 15. New York: American Geographical Society, 110.Google Scholar
Eastman, J.T. 1993. Antarctic fish biology: evolution in a unique environment. San Diego: Academic Press, 322 pp.Google Scholar
Eastman, J.T. 2005. The nature of the diversity of Antarctic fishes. Polar Biology, 28, 93107.CrossRefGoogle Scholar
Eastman, J.T.DeVries, A.L. 1981. Buoyancy adaptations in a swim-bladderless Antarctic fish. Journal of Morphology, 167, 91102.CrossRefGoogle Scholar
Edwards, S.V., Liu, L.Pearl, D.K. 2007. High resolution species trees without concatenation. Proceedings of the National Academy of Sciences of the United States of America, 104, 59365941.CrossRefGoogle ScholarPubMed
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 9598.Google Scholar
Hureau, J.C. 1994. The significance of fish in the marine Antarctic ecosystems. Polar Biology, 14, 307313.CrossRefGoogle Scholar
Klingenberg, C.P.Ekau, W. 1996. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biological Journal of the Linnean Society, 59, 143177.CrossRefGoogle Scholar
Kocher, T.D., Conroy, J.A., McKaye, K.R., Stauffer, J.R.Lockwood, S.F. 1995. Evolution of NADH dehydrogenase subunit 2 in East African cichlid fish. Molecular Phylogenetics and Evolution, 4, 420432.CrossRefGoogle ScholarPubMed
Kock, K.-H. 1992. Antarctic fish and fisheries. Cambridge: Cambridge University Press, 359 pp.Google Scholar
Kuhn, K.L., Near, T.J., Jones, C.D.Eastman, J.T. 2009. Aspects of the biology and population genetics of the Antarctic nototheniid fish Trematomus nicolai. Copeia, 2, 320327.CrossRefGoogle Scholar
La Mesa, M., Caputo, V.Eastman, J.T. 2008. The reproductive biology of two epibenthic species of Antarctic nototheniid fish of the genus Trematomus. Antarctic Science, 20, 355364.CrossRefGoogle Scholar
Miller, R.G. 1993. A history and atlas of the fishes of the Antarctic Ocean. Carson City: Foresta Institute for Ocean and Mountain Studies, 795 pp.Google Scholar
Near, T.J. 2004. Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarctic Science, 16, 3744.CrossRefGoogle Scholar
Near, T.J., Pesavento, J.J.Cheng, C.-H.C. 2003. Mitochondrial DNA, morphology and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Molecular Phylogenetics and Evolution, 28, 8798.CrossRefGoogle ScholarPubMed
Near, T.J., Pesavento, J.J.Cheng, C.-H.C. 2004. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Molecular Phylogenetics and Evolution, 32, 881891.CrossRefGoogle ScholarPubMed
Near, T.J.Cheng, C.H.C. 2008. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 47, 832840.CrossRefGoogle ScholarPubMed
Posada, D.Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817818.CrossRefGoogle ScholarPubMed
Posada, D.Crandall, K.A. 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology, 50, 580601.CrossRefGoogle ScholarPubMed
Ritchie, P.A., Lavoué, S.Lecointre, G. 1997. Molecular phylogenetics and the evolution of Antarctic notothenioid fishes. Comparative Biochemistry and Physiology, 4, 10091027.CrossRefGoogle Scholar
Ritchie, P.A., Bargelloni, L., Meyer, A., Taylor, J.A., Macdonald, L.A.Lambert, D.M. 1996. Mitochondrial phylogeny of Trematomid fishes (Nototheniidae, Perciforms) and the evolution of Antarctic fish. Molecular Phylogenetics and Evolution, 5, 383390.CrossRefGoogle ScholarPubMed
Ronquist, F.Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 15721574.CrossRefGoogle ScholarPubMed
Sanchez, S., Dettaï, A., Bonillo, C., Ozouf-Costaz, C., Detrich, H.W. IIILecointre, G. 2007. Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biology, 30, 155166.CrossRefGoogle Scholar