Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T19:09:42.907Z Has data issue: false hasContentIssue false

Palaeoenvironmental implications derived from a piston core from east lobe Bonney, Taylor Valley, Antarctica

Published online by Cambridge University Press:  12 August 2010

Bernd Wagner*
Affiliation:
University of Cologne, Institute of Geology and Mineralogy, Zülpicher Str. 49a, D-50674 Cologne, Germany
Sabrina Ortlepp
Affiliation:
University of Cologne, Institute of Geology and Mineralogy, Zülpicher Str. 49a, D-50674 Cologne, Germany
Fabien Kenig
Affiliation:
University of Illinois at Chicago, Earth and Environmental Sciences, M/C 186, 845 W. Taylor St, Chicago, IL 60607-7059, USA
Peter T. Doran
Affiliation:
University of Illinois at Chicago, Earth and Environmental Sciences, M/C 186, 845 W. Taylor St, Chicago, IL 60607-7059, USA
Martin Melles
Affiliation:
University of Cologne, Institute of Geology and Mineralogy, Zülpicher Str. 49a, D-50674 Cologne, Germany

Abstract

A 270 cm long sediment sequence was recovered with a piston corer from east lobe Bonney, Taylor Valley, Antarctica, and characterized according to its sedimentological, mineralogical, and geochemical properties. It is the first record of such length recovered from east lobe Bonney. The sediment core is mainly composed of halite crystals of different sizes, water, and a relatively low and stable proportion of clastic particles. Although the sediment surface was probably disturbed by the coring process and absence or low contents of organic material or carbonates hampers the establishment of a robust chronology by radiocarbon dating, the core probably contains at least several hundred years of information about the history of the lake and the Bonney basin. Variations in halite crystal sizes and amount as well as variations in the composition of clastic material can be related to past lake level changes and evaporation cycles.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, J.E., Virginia, R.A., Wall, D.H., Doran, P.T., Fountain, A.G., Welch, K.A.Lyons, W.B. 2008. Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biology, 14, 22492261.Google Scholar
Bomblies, A., McKnight, D.M.Andrews, E.D. 2001. Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-year record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 477492.CrossRefGoogle Scholar
Chinn, T.J. 1993. Physical hydrology of the dry valley lakes. Antarctic Research Series, 59, 151.Google Scholar
Clow, G.D., McKay, C.P., Simmons, G.M. JrWharton, R.A. Jr 1988. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. Journal of Climate, 1, 715728.2.0.CO;2>CrossRefGoogle ScholarPubMed
Craig, J.R., Fortner, R.D.Weand, B.L. 1974. Halite and hydrohalite from Lake Bonney, Taylor Valley, Antarctica. Geology, 1, 389390.2.0.CO;2>CrossRefGoogle Scholar
Croall, J.G. 2005. Late Holocene cool climate episodes recorded in Lake Bonney, an Antarctic amplifier lake. MSc thesis, University of Waikato, 177 pp. [Unpublished.]Google Scholar
Doran, P.T., Berger, G.W., Lyons, W.B., Wharton, R.A. Jr, Davisson, M.L., Southon, J.Dibb, J.E. 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 223239.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T.Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, 10.1029/2001JD002045.Google Scholar
Dronkert, H. 1985. Evaporite models and sedimentology of Messinian and recent evaporites. PhD thesis, Universiteit van Amsterdam, 283 pp. [Unpublished.]Google Scholar
Eugster, H.P. 1980. Geochemistry of evaporitic lacustrine deposits. Annual Review of Earth and Planetary Sciences, 8, 3563.CrossRefGoogle Scholar
Hall, B.L.Denton, G.H. 2000. Radiocarbon chronology of Ross Sea Drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the Last Glacial Maximum. Geografiska Annaler, 82A, 305336.CrossRefGoogle Scholar
Hall, B.L., Denton, G.H.Hendy, C.H. 2000. Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler, 82A, 275303.CrossRefGoogle Scholar
Hendy, C.H. 2000a. Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82A, 411432.CrossRefGoogle Scholar
Hendy, C.H. 2000b. The role of polar lake ice as a filter for glacial lacustrine sediments. Geografiska Annaler, 82A, 271274.Google Scholar
Hendy, C.H.Hall, B. 2006. The radiocarbon reservoir effect in proglacial lakes: examples from Antarctica. Earth and Planetary Science Letters, 241, 413421.Google Scholar
Hendy, C.H., Wilson, A.T., Popplewell, K.B.House, D.A. 1977. Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climate changes. New Zealand Journal of Geology and Geophysics, 20, 11031122.Google Scholar
Higgins, S.M., Denton, G.H.Hendy, C.H. 2000a. Glacial geomorphology of Bonney Drift, Taylor Valley. Geografiska Annaler, 82A, 365390.Google Scholar
Higgins, S.M., Hendy, C.H.Denton, G.H. 2000b. Geochronology of Bonney Drift, Taylor Valley, Antarctica: evidence for interglacial expansions of Taylor Glacier. Geografiska Annaler, 82A, 391409.CrossRefGoogle Scholar
Hubbard, A., Lawson, W., Anderson, B., Hubbard, B.P.Blatter, H. 2004. Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Annals of Glaciology, 39, 7984.CrossRefGoogle Scholar
Keys, J.R.Williams, K. 1981. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica et Cosmochimica Acta, 45, 22992309.Google Scholar
King, R.J. 2005. Minerals explained 42: Halite. Geology Today, 21, 153157.Google Scholar
Knoepfle, J.L., Doran, P.T., Kenig, F., Lyons, W.B.Galchenko, V.F. 2009. Particulate organic and dissolved inorganic carbon stable isotopic compositions in Taylor Valley lakes, Antarctica: the effect of legacy. Hydrobiologia, 632, 139156.Google Scholar
Last, W.M. 1993. Rates of sediment deposition in a hypersaline lake in the northern Great Plains of western Canada. International Journal of Salt Lake Research, 2, 4758.CrossRefGoogle Scholar
Lawson, J.L. 2005. Lacustrine biogeochemistry of the McMurdo Dry Valleys, Antarctica. MSc thesis, University of Illinois at Chicago, 173 pp. [Unpublished.]Google Scholar
Lawson, J.L., Doran, P.T., Kenig, F., des Marais, D.J.Priscu, J.C. 2004. Stable carbon and nitrogen isotopic composition of benthic and pelagic organic matter in lakes of the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 269301.CrossRefGoogle Scholar
Lowenstein, T.K.Hardie, L.A. 1985. Criteria for the recognition of salt-pan evaporites. Sedimentology, 32, 627644.CrossRefGoogle Scholar
Lyons, W.B., Frape, S.K.Welch, K.A. 1999. History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data. Geology, 27, 527530.Google Scholar
Lyons, W.B., Tyler, S.W., Wharton, R.A., McKnight, D.M.Vaughn, B.H. 1998. A late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 247256.Google Scholar
Lyons, W.B., Welch, K.A., Snyder, G., Olesik, J., Graham, E.Y., Marion, G.M.Poreda, R.J. 2005. Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: clues to the origin of solutes and lake evolution. Geochimica et Cosmochimica Acta, 69, 305323.CrossRefGoogle Scholar
Marland, G. 1975. The stability of CaC03·6H2O (ikaite). Geochimica et Cosmochimica Acta, 39, 8391.CrossRefGoogle Scholar
Matsubaya, O., Sakai, H., Torii, T., Burton, H.Kerry, K. 1979. Antarctic saline lakes: stable isotopic ratios, chemical compositions and evolution. Geochimica et Cosmochimica Acta, 43, 725.CrossRefGoogle Scholar
Mikucki, J.A., Pearson, A., Johnston, D.T., Turchyn, A.V., Farquhar, J., Schrag, D.P., Anbar, A.D., Priscu, J.C.Lee, P.A. 2009. A contemporary microbially maintained subglacial ferrous “ocean”. Science, 324, 397400.Google Scholar
Neumann, K., Lyons, W.B., Priscu, J.C., des Marais, D.J.Welch, K.A. 2004. The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Annals of Glaciology, 39, 518524.CrossRefGoogle Scholar
Poreda, R.J., Hunt, A.G., Lyons, W.B.Welch, K.A. 2004. The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: timing of late Holocene climate change in Antarctica. Aquatic Geochemistry, 10, 353371.CrossRefGoogle Scholar
Priscu, J.C., ed. 1998. Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 369 pp.Google Scholar
Schreiber, B.C.El Tabakh, M. 2000. Deposition and early alteration of evaporites. Sedimentology, 47, 215238.Google Scholar
Smith, G.I.Friedman, I. 1993. Lithology and paleoclimatic implications of lacustrine deposits around Lake Vanda and Don Juan Pond, Antarctica. Antarctic Research Series, 59, 8394.Google Scholar
Spigel, R.H.Priscu, J.C. 1996. Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake. Hydrobiologia, 321, 177190.CrossRefGoogle Scholar
Stiller, M., Rounick, J.S.Shasha, S. 1985. Extreme carbon-isotope enrichments in evaporite brines. Nature, 316, 434435.Google Scholar
Wagner, B., Melles, M., Doran, P.T., Kenig, F., Forman, S.L., Pierau, R.Allen, P. 2006. Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 320337.Google Scholar
Whittaker, T.E., Hall, B.L., Hendy, C.H.Spaulding, S.A. 2008. Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica. The Holocene, 18, 775786.CrossRefGoogle Scholar
Williams-Jones, A.E.Samson, I.M. 1990. Theoretical estimation of halite solubility in the system NaCl-CaCl2-H2O: applications to fluid inclusions. Canadian Mineralogist, 28, 299304.Google Scholar
Wilson, A.T., Hendy, C.H., Healy, T.R., Gumbley, J.W., Field, A.B.Reynolds, C.P. 1974. Dry valley lake sediments: a record of Cenozoic climatic events. Antarctic Journal of the United States, 9 (4), 134135.Google Scholar