Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T20:46:50.055Z Has data issue: false hasContentIssue false

The limnology and spectral behaviour of a freshwater lake at Harmony Point, Nelson Island, Antarctica

Published online by Cambridge University Press:  12 July 2021

Cristiano Niederauer Da Rosa*
Affiliation:
Federal University of Rio Grande do Sul, Polar and Climate Center, Avenida Bento Gonçalves, 9500, Building 43136, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
Waterloo Pereira Filho
Affiliation:
Department of Geosciences, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
Ulisses Franz Bremer
Affiliation:
Federal University of Rio Grande do Sul, Polar and Climate Center, Avenida Bento Gonçalves, 9500, Building 43136, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
André Medeiros De Andrade
Affiliation:
Federal University of Vales do Jequitinhonha e Mucuri, Institute of Agricultural Sciences, Av. Universitária, 1.000, B Universitários, 38610-000, Unaí, Minas Gerais, Brazil
Gisieli Kramer
Affiliation:
Department of Geosciences, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
Fernando Luis Hillebrand
Affiliation:
Federal University of Rio Grande do Sul, Polar and Climate Center, Avenida Bento Gonçalves, 9500, Building 43136, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
Janisson Batista De Jesus
Affiliation:
Federal University of Rio Grande do Sul, Polar and Climate Center, Avenida Bento Gonçalves, 9500, Building 43136, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil

Abstract

The present study investigates the effect of limnology on the spectral reflectance of a freshwater lake, located in an ice-free area in the Antarctic Peninsula. Field-collected samples generated limnological and spectral parameters. This fact indicates that the studied lake has an ultra-oligotrophic/oligotrophic nature based on chlorophyll a (chl a), which registered concentrations below 3 μg l-1 with no total suspended solids, almost neutral pH and transparency equalled by depth. The water spectral behaviour in each sampling station indicates that the benthic characteristics of the lake have a strong influence as the reflectance at the 705 nm wavelength being greater than that at 583 nm signals the presence of soil and/or vegetation at its bottom. Hence, it is believed that the orbital sensors with spectral bands focused on regions between the green and red edge, such as the MultiSpectral Instrument (MSI) sensor, may present better results for distinguishing the different bottom types found in the research area.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bañón, M., Justel, A., Velázquez, D. & Quesada, A. 2013. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 25, 10.1017/S0954102012001046.10.1017/S0954102012001046CrossRefGoogle Scholar
Baumhoer, C., Dietz, A., Dech, S. & Kuenzer, C. 2018. Remote sensing of Antarctic glacier and ice-shelf front dynamics - a review. Remote Sensing, 10, 10.3390/rs10091445.10.3390/rs10091445CrossRefGoogle Scholar
Braun, M., Saurer, H., Vogt, S., Simões, J.C. & Goßmann, H. 2001. The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap: circulation/energy balance relationships. International Journal of Climatology, 21, 10.1002/joc.563.10.1002/joc.563CrossRefGoogle Scholar
Cantonati, M., Poikane, S., Pringle, C.M., Stevens, L.E., Turak, E., Heino, J., Richardson, J.S., et al. 2020. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water, 12, 10.3390/w12010260.10.3390/w12010260CrossRefGoogle Scholar
Chen, Z., Curran, P.J. & Hansom, J.D. 1992. Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sensing of Environment, 40, 6777.10.1016/0034-4257(92)90127-6CrossRefGoogle Scholar
Christopherson, R.W. & Birkeland, G.H. 2015. Global climate systems. In Geosystems: an introduction to physical geography. Boston, MA: Pearson, 256285.Google Scholar
Ciotti, Á.M., Lewis, M.R. & Cullen, J.J. 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography, 47, 10.4319/lo.2002.47.2.0404.10.4319/lo.2002.47.2.0404CrossRefGoogle Scholar
Cremer, H., Gore, D., Hultzsch, N., Melles, M. & Wagner, B. 2004. The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biology, 27, 10.1007/s00300-004-0624-2.10.1007/s00300-004-0624-2CrossRefGoogle Scholar
Dierssen, H.M. & Smith, R.C. 2000. Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. Journal of Geophysical Research - Oceans, 105, 10.1029/1999JC000296.10.1029/1999JC000296CrossRefGoogle Scholar
Doxaran, D., Froidefond, J.-M. & Castaing, P. 2003. Remote-sensing reflectance of turbid sediment-dominated waters: reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Applied Optics, 42, 10.1364/AO.42.002623.10.1364/AO.42.002623CrossRefGoogle ScholarPubMed
Earth Resources Observation and Science (EROS) Center. 2013. Collection-2 Landsat 8–9 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-2 science products, Reston, VA: USGS, 10.5066/P9OGBGM6.Google Scholar
Eleveld, M., Ruescas, A., Hommersom, A., Moore, T., Peters, S. & Brockmann, C. 2017. An optical classification tool for global lake waters. Remote Sensing, 9, 10.3390/rs9050420.10.3390/rs9050420CrossRefGoogle Scholar
Esteves, F. de A. & Barbieri, R. 2011. A radiação e seus efeitos em ecossistemas aquáticos continentais. In Fundamentos de limnologia. Rio de Janeiro: Interciência, 137166.Google Scholar
Gholizadeh, M., Melesse, A. & Reddi, L. 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, 16, 10.3390/s16081298.10.3390/s16081298CrossRefGoogle ScholarPubMed
Gilvear, D., Hunter, P. & Higgins, T. 2007. An experimental approach to the measurement of the effects of water depth and substrate on optical and near infra-red reflectance: a field-based assessment of the feasibility of mapping submerged instream habitat. International Journal of Remote Sensing, 28, 10.1080/01431160600976079.10.1080/01431160600976079CrossRefGoogle Scholar
Gitelson, A. 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13, 10.1080/01431169208904125.10.1080/01431169208904125CrossRefGoogle Scholar
Goodin, D.G., Han, L., Fraser, R., Rundquist, D.C., Stebbins, W. & Schalles, J.F. 1993. Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogrammetric Engineering and Remote Sensing, 59, 505510.Google Scholar
Guanter, L., Segl, K. & Kaufmann, H. 2009. Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission. IEEE Transactions on Geoscience and Remote Sensing, 47, 10.1109/TGRS.2008.2011616.10.1109/TGRS.2008.2011616CrossRefGoogle Scholar
Han, L. & Rundquist, D.C. 1997. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in a turbid reservoir. Remote Sensing of Environment, 62, 253261.10.1016/S0034-4257(97)00106-5CrossRefGoogle Scholar
Hansen, C., Burian, S., Dennison, P. & Williams, G. 2017. Spatiotemporal variability of lake water quality in the context of remote sensing models. Remote Sensing, 9, 10.3390/rs9050409.10.3390/rs9050409CrossRefGoogle Scholar
Hansson, L.-A., Dartnall, H.J.G., Ellis-Evans, J.C., MacAlister, H. & Tranvik, L.J. 1996. Variation in physical, chemical and biological components in the subantarctic lakes of South Georgia. Ecography, 19, 10.1111/j.1600-0587.1996.tb00004.x.10.1111/j.1600-0587.1996.tb00250.xCrossRefGoogle Scholar
Hellweger, F.L., Schlosser, P., Lall, U. & Weissel, J.K. 2004. Use of satellite imagery for water quality studies in New York Harbor. Estuarine, Coastal and Shelf Science, 61, 10.1016/j.ecss.2004.06.019.10.1016/j.ecss.2004.06.019CrossRefGoogle Scholar
Hillebrand, F.L., Rosa, C.N. & Bremer, U.F. 2018. Mapping of moist snow and percolation zones through Sentinel-2. Anuário do Instituto de Geociências - UFRJ, 41, 10.11137/2018_3_96_103.Google Scholar
Ilori, C., Pahlevan, N. & Knudby, A. 2019. Analyzing performances of different atmospheric correction techniques for Landsat 8: application for coastal remote sensing. Remote Sensing, 11, 10.3390/rs11040469.10.3390/rs11040469CrossRefGoogle Scholar
Jawak, S.D. & Luis, A.J. 2015. A rapid extraction of water body features from Antarctic coastal oasis using very high-resolution satellite remote sensing data. Aquatic Procedia, 4, 10.1016/j.aqpro.2015.02.018.Google Scholar
Jensen, J.R. 2007. Remote sensing of the environment: an earth resource perspective, 2nd edn. Upper Saddle River, NJ: Pearson Prentice Hall, 592 pp.Google Scholar
Jiahong, W. & Jiancheng, K. 1994. Climate, mass balance and glacial changes on small dome of Collins Ice Cap, King George Island, Antarctica. Antarctic Research, 5, 5261.Google Scholar
Jorge, D.S.F., Barbosa, C.C.F., Carvalho, L.A.S.D., Affonso, A.G., Lobo, F.D.L. & Novo, E.M.L.D.M. 2017. SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sensing, 9, 10.3390/rs9070644.10.3390/rs9070644CrossRefGoogle Scholar
Kimura, S., Ban, S., Imura, S., Kudoh, S. & Matsuzaki, M. 2010. Limnological characteristics of vertical structure in the lakes of Syowa Oasis, East Antarctica. Polar Science, 3, 10.1016/j.polar.2009.08.002.10.1016/j.polar.2009.08.002CrossRefGoogle Scholar
King, J.C. & Turner, J. 1997. Physical climatology. In Antarctic meteorology and climatology. Cambridge: Cambridge University Press, 61141.10.1017/CBO9780511524967CrossRefGoogle Scholar
Köppen, W. 1948. Climatologia: con un studio de los climas de la tierra. Mexico City: Fondo de Cultura Economica, 479 pp.Google Scholar
Kutser, T. 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography, 49, 10.4319/lo.2004.49.6.2179.10.4319/lo.2004.49.6.2179CrossRefGoogle Scholar
Kutser, T., Vahtmäe, E. & Martin, G. 2006. Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuarine, Coastal and Shelf Science, 67, 10.1016/j.ecss.2005.12.004.10.1016/j.ecss.2005.12.004CrossRefGoogle Scholar
Kutser, T., Paavel, B., Verpoorter, C., Ligi, M., Soomets, T., Toming, K. & Casal, G. 2016. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sensing, 8, 10.3390/rs8060497.10.3390/rs8060497CrossRefGoogle Scholar
Laybourn-Parry, J. 2002. Survival mechanisms in Antarctic lakes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 10.1098/rstb.2002.1075.10.1098/rstb.2002.1075CrossRefGoogle ScholarPubMed
Liew, S.C., Choo, C.K., Lau, J.W.M., Chan, W.S. & Dang, T.C. 2019. Monitoring water quality in Singapore reservoirs with hyperspectral remote sensing technology. Water Practice and Technology, 14, 10.2166/wpt.2018.119.10.2166/wpt.2018.119CrossRefGoogle Scholar
Lizotte, M.P. 2008. Phytoplankton and primary production. In Vincent, W.F. & Laybourn-Parry, J., eds. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press.Google Scholar
López-Martínez, J., Serrano, E., Schmid, T., Mink, S. & Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155156, 10.1016/j.geomorph.2011.12.018.Google Scholar
López-Martínez, J., Schmid, T., Serrano, E., Mink, S., Nieto, A. & Guillaso, S. 2016. Geomorphology and landforms distribution in selected ice-free areas in the South Shetland Islands, Antarctic Northern Peninsula region. Cuadernos de Investigación Geográfica, 42, 10.18172/cig.2965.10.18172/cig.2965CrossRefGoogle Scholar
Lyzenga, D.R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17, 10.1364/AO.17.000379.10.1364/AO.17.000379CrossRefGoogle ScholarPubMed
Mackinney, G. 1941. Absorption of light by chlorophyll. Journal of Biological Chemistry, 140, 315322.10.1016/S0021-9258(18)51320-XCrossRefGoogle Scholar
Maritorena, S., Morel, A. & Gentili, B. 1994. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and Oceanography, 39, 10.4319/lo.1994.39.7.1689.10.4319/lo.1994.39.7.1689CrossRefGoogle Scholar
Mobley, C.D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38, 10.1364/AO.38.007442.10.1364/AO.38.007442CrossRefGoogle ScholarPubMed
Nakai, R., Imura, S. & Naganuma, T. 2019. Patterns of microorganisms inhabiting Antarctic freshwater lakes with special reference to aquatic moss pillars. In Castro-Sowinski, S., ed. The ecological role of micro-organisms in the Antarctic environment. Cham: Springer, 2543.10.1007/978-3-030-02786-5_2CrossRefGoogle Scholar
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M. & Elster, J. 2013. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic Science, 25, 10.1017/S0954102012000934.10.1017/S0954102012000934CrossRefGoogle Scholar
Novo, E.M.M., Hansom, J.D. & Curran, P.J. 1989. The effect of sediment type on the relationship between reflectance and suspended sediment concentration. International Journal of Remote Sensing, 10, 10.1080/01431168908903967.Google Scholar
Olmanson, L.G., Brezonik, P.L., Finlay, J.C. & Bauer, M.E. 2016. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 10.1016/j.rse.2016.01.007.10.1016/j.rse.2016.01.007CrossRefGoogle Scholar
Øvstedal, D.O. & Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Pahlevan, N. & Schott, J.R. 2013. Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 10.1109/JSTARS.2012.2235174.10.1109/JSTARS.2012.2235174CrossRefGoogle Scholar
Pereira Filho, W., Barbosa, C.C.F. & Novo, E.M.L. de M. 2005. Influência das condições do tempo em espectros de reflectância da água. In XII Simpósio Brasileiro de Sensoriamento Remoto. Goiânia, 415–422.Google Scholar
Rice, E.W. & American Public Health Association, eds. 2012a. Chlorophyll. In Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, 1022.Google Scholar
Rice, E.W. & American Public Health Association, eds. 2012b. Solids. In Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, 262.Google Scholar
Rochera, C., Quesada, A., Toro, M., Rico, E. & Camacho, A. 2017. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: a size spectra approach. Polar Science, 11, 10.1016/j.polar.2017.01.001.10.1016/j.polar.2017.01.001CrossRefGoogle Scholar
Rodrigues, W.F., Oliveira, F.S., Schaefer, C.E.G.R., Leite, M.G.P., Gauzzi, T., Bockheim, J.G. & Putzke, J. 2019. Soil-landscape interplays at Harmony Point, Nelson Island, Maritime Antarctica: chemistry, mineralogy and classification. Geomorphology, 336, 10.1016/j.geomorph.2019.03.030.10.1016/j.geomorph.2019.03.030CrossRefGoogle Scholar
Schwaller, M.R., Lynch, H.J., Tarroux, A. & Prehn, B. 2018. A continent-wide search for Antarctic petrel breeding sites with satellite remote sensing. Remote Sensing of Environment, 210, 10.1016/j.rse.2018.02.071.10.1016/j.rse.2018.02.071CrossRefGoogle Scholar
Shevnina, E. & Kourzeneva, E. 2017. Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A: Dynamic Meteorology and Oceanography, 69, 10.1080/16000870.2017.1317202.10.1080/16000870.2017.1317202CrossRefGoogle Scholar
Simonov, I.M. 1977. Physical-geographic description of the Fildes Peninsula (South Shetland Islands). Polar Geography, 1, 10.1080/10889377709388627.10.1080/10889377709388627CrossRefGoogle Scholar
Tanabe, Y., Ohtani, S., Kasamatsu, N., Fukuchi, M. & Kudoh, S. 2010. Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biology, 33, 10.1007/s00300-009-0687-1.10.1007/s00300-009-0687-1CrossRefGoogle Scholar
Tanabe, Y., Yasui, S., Osono, T., Uchida, M., Kudoh, S. & Yamamuro, M. 2017. Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes. Polar Biology, 40, 10.1007/s00300-016-1983-1.10.1007/s00300-016-1983-1CrossRefGoogle Scholar
Toro, M., Camacho, A., Rochera, C., Rico, E., Bañón, M., Fernández-Valiente, E., Marco, E., et al. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctica. Polar Biology, 30, 10.1007/s00300-006-0223-5.10.1007/s00300-006-0223-5CrossRefGoogle Scholar
Tsai, F. & Philpot, W. 1998. Derivative analysis of hyperspectral data. Remote Sensing of Environment, 66, 10.1016/S0034-4257(98)00032-7.10.1016/S0034-4257(98)00032-7CrossRefGoogle Scholar
Turner, D., Lucieer, A., Malenovský, Z., King, D. & Robinson, S.A. 2018. Assessment of Antarctic moss health from multi-sensor UAS imagery with random forest modelling. International Journal of Applied Earth Observation and Geoinformation, 68, 10.1016/j.jag.2018.01.004.10.1016/j.jag.2018.01.004CrossRefGoogle Scholar
Vinocur, A. & Unrein, F. 2000. Typology of lentic water bodies at Potter Peninsula (King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities. Polar Biology, 23, 10.1007/s003000000165.10.1007/s003000000165CrossRefGoogle Scholar
Wachholz, F. 2011. Influência da bacia hidrográfica e características espaço-temporais de variáveis limnológicas sobre reservatórios no Rio Jacuí - RS. Doutorado em Geografia, Rio Claro: Universidade Estadual Paulista, 197 pp. Available at: https://repositorio.unesp.br/handle/11449/104345.Google Scholar
Xu, J., Gao, C. & Wang, Y. 2020. Extraction of spatial and temporal patterns of concentrations of chlorophyll-a and total suspended matter in Poyang Lake using GF-1 satellite data. Remote Sensing, 12, 10.3390/rs12040622.Google Scholar
Zeng, C., Zeng, T., Fischer, A. & Xu, H. 2017. Fluorescence-based approach to estimate the chlorophyll-a concentration of a phytoplankton bloom in Ardley Cove (Antarctica). Remote Sensing, 9, 10.3390/rs9030210.10.3390/rs9030210CrossRefGoogle Scholar
Zhang, Y., Giardino, C. & Li, L. 2017. Water optics and water colour remote sensing. Remote Sensing, 9, 10.3390/rs9080818.Google Scholar