Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T01:32:06.588Z Has data issue: false hasContentIssue false

Late autumn to spring changes in the inorganic and organic carbon dissolved in the water column at Scholaert Channel, West Antarctica

Published online by Cambridge University Press:  24 November 2009

Xiaomeng Wang
Affiliation:
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China266100 Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, CanadaG5L 3A1
Gui-Peng Yang
Affiliation:
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China266100
Damian López
Affiliation:
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, CanadaG5L 3A1
Gustavo Ferreyra
Affiliation:
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, CanadaG5L 3A1 Instituto Antártico Argentino, Cerrito 1248 (1010) Buenos Aires, Argentina
Karine Lemarchand
Affiliation:
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, CanadaG5L 3A1
Huixiang Xie*
Affiliation:
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, CanadaG5L 3A1

Abstract

The temporal changes in dissolved inorganic (DIC) and organic carbon concentrations (DOC) were monitored from late autumn to spring 2006 in the Scholaert Channel, West Antarctic Peninsula. Surface DIC spanned a small range (2163.3 to 2194.5 μmol kg-1), increasing from late autumn to winter and then decreasing in spring. An excess of DOC (7.0–63.6 μmol l-1), against a deepwater background concentration of 44 μmol l-1, existed in the surface mixed layer throughout the sampling period. Mass-balance budgeting indicates that the DIC dynamics were primarily governed by remineralization in winter and by primary production in spring despite very low biomass of both autotrophic and heterotrophic organisms. The net community production (7.3 mmol C m-2 d-1) in spring was mainly partitioned to DOC accumulation (3.6 mmol m-2 d-1) and downward export of particulate organic carbon (POC) (2.9 mmol m-2 d-1) rather than POC accretion (0.8 mmol m-2 d-1) in the surface mixed layer. The study area acted as a source of CO2 to the atmosphere in winter (∼0.8 mmol m-2 d-1) and a sink in spring (2.3–5.3 mmol m-2 d-1), and hence was not a one-way CO2 sink as had been previously hypothesized for marginal sea ice zones.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez, M., Ríos, A.F.Rosón, G. 2002. Spatio-temporal variability of air-sea fluxes of carbon dioxide and oxygen in the Bransfield and Gerlache Straits during austral summer 1995–96. Deep-Sea Research II, 49, 643662.CrossRefGoogle Scholar
Bakker, D.C.E., De Baar, H.J.W.Bathmann, U.V. 1997. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep-Sea Research II, 44, 91127.CrossRefGoogle Scholar
Bégovic, M.Copin-Montégut, C. 2002. Processes controlling annual variations in the partial pressure of CO2 in surface waters of the central northwestern Mediterranean Sea (Dyfamed site). Deep-Sea Research II, 49, 20312047.Google Scholar
Bertolin, M.L.Schloss, I.R. 2009. Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica. Polar Biology, 10.1007/s00300-009-0638-x.CrossRefGoogle Scholar
Cai, W.J.Wang, Y. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha rivers, Georgia. Limnology and Oceanography, 43, 657668.Google Scholar
Carlson, C.A. 2002. Production and removal processes. In Hansell, D.A & Carlson, C.A., eds. Biogeochemistry of marine dissolved organic matter. San Diego, CA: Academic Press, 91139.Google Scholar
Carlson, C.A., Ducklow, H.W.Michaels, A.F. 1994. Annual flux of dissolved organic-carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371, 405408.Google Scholar
Carlson, C.A., Hansell, D.A., Peltzer, E.T.Smith, W.O. 2000. Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. Deep-Sea Research II, 47, 32013225.CrossRefGoogle Scholar
Carrillo, C.J.Karl, D.M. 1999. Dissolved inorganic carbon pool dynamics in northern Gerlache Straits, Antarctica. Journal of Geophysical Research-Oceans, 104, 1587315884.CrossRefGoogle Scholar
Carrillo, C.J., Smith, R.C.Karl, D.M. 2004. Processes regulating oxygen and carbon dioxide in surface waters west of the Antarctic Peninsula. Marine Chemistry, 84, 161179.Google Scholar
Carrillo, P., Medina-Sánchez, J.M., Villar-Argaiz, M., Delgado-Molina, J.A.Bullejos, F.J. 2006. Complex interactions in microbial food webs: stoichiometric and functional approaches. Limnetica, 25, 189204.Google Scholar
Chen, F., Cai, W.J., Wang, Y., Rii, Y.M., Bidigare, R.R.Benitez-Nelson, C.R. 2008. The carbon dioxide system and net community production within a cyclonic eddy in the lee of Hawaii. Deep-Sea Research. II, 55, 14121425.CrossRefGoogle Scholar
Church, M.J., DeLong, E.F., Ducklow, H.W., Karner, M.B., Preston, C.M.Karl, D.M. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 48, 18931902.Google Scholar
Copin-Montégut, G.Avril, B. 1993. Vertical distribution and temporal variation of dissolved organic carbon in the north-western Mediterranean Sea. Deep-Sea Research, 40, 19631972.CrossRefGoogle Scholar
Dafner, E.V. 1992. Dissolved organic-carbon in waters of the Polar Frontal Zone of the Atlantic Antarctic in the spring summer season of 1988–1989. Marine Chemistry, 37, 275283.Google Scholar
Davidson, A.T.Marchant, H.J. 1992. Protist abundance and carbon concentration during a phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biology, 12, 387395.Google Scholar
De Baar, H.J.W., De Jong, J.T.M., Bakker, D.C.E., Löscher, B.M., Veth, C., Bathmann, U.Smetacek, V. 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373, 412415.CrossRefGoogle Scholar
Doval, M.D., Álvarez-Salgado, X.A., Castro, C.G.Pérez, F.F. 2002. Dissolved organic carbon distributions in the Bransfield and Gerlache Straits, Antarctica. Deep-Sea Research II, 49, 663674.Google Scholar
Ducklow, H.W., Baker, K., Martinson, D.G., Quetin, L.B., Ross, R.M., Smith, R.C., Stammerjohn, S.E., Vernet, M.Fraser, W. 2007. Marine pelagic ecosystems: the West Antarctic Peninsula. Philosophical Transactions of the Royal Society, B362, 6794.CrossRefGoogle Scholar
Fritsen, C.H., Memmott, J.Stewart, F.J. 2008. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep-Sea Research II, 55, 20592067.Google Scholar
Fransson, A., Chierici, M., Anderson, L.G.David, R. 2004. Transformation of carbon and oxygen in the surface layer of the eastern Atlantic sector of the Southern Ocean. Deep-Sea Research II, 51, 27572772.Google Scholar
García, M.A., Castro, C.G., Ríos, A.F., Doval, M.D., Rosón, G., Gomis, D.López, O. 2002. Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96. Deep-Sea Research II, 49, 585602.CrossRefGoogle Scholar
Gibson, J.A.E. 1998. Carbon flow through inshore marine environments of the Vestfold Hills, East Antarctica. ANARE Scientific Reports, no. 139, 224 pp.Google Scholar
Gibson, J.A.E.Trull, T.W. 1999. Annual cycle of fCO2 under sea-ice and in open water in Prydz Bay, East Antarctica. Marine Chemistry, 66, 187200.CrossRefGoogle Scholar
Grasshof, K., Ehrahrdt, M.Kremling, K. 1983. Methods of seawater analysis, 2nd ed. Weinheim, Germany: Verlag Chemie, 419pp.Google Scholar
Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A.Booth, B.C. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Research II, 44, 16231644.Google Scholar
Hansell, D.A.Carlson, C.A. 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395, 263266.Google Scholar
Hansell, D.A.Carlson, C.A. 2001. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep-Sea Research II, 48, 16491667.Google Scholar
Hansell, D.A.Peltzer, E.T. 1998. Spatial and temporal variations of total organic carbon in the Arabia Sea. Deep-Sea Research II, 45, 21712193.Google Scholar
Hoppema, M., Stoll, M.H.C.De Baar, H.J.W. 2000. CO2 in the Weddell Gyre and Antarctic Circumpolar Current: austral autumn and early winter. Marine Chemistry, 72, 203220.Google Scholar
Hoppema, M., Fahrbach, E., Schröder, M., Wisotzki, A.De Baar, H.J.W. 1995. Winter-summer differences of carbon dioxide and oxygen in the Weddell Sea surface layer. Marine Chemistry, 51, 177192.Google Scholar
Lee, S.H., Whitledge, T.E.Kang, S.H. 2008. Spring time production of bottom ice algae in the landfast sea ice zone at Barrow, Alaska. Journal of Experimental Marine Biology and Ecology, 367, 204212.CrossRefGoogle Scholar
Lewis, E.Wallace, D.W.R. 1998. Program Developed for CO2 system calculations. Oak Ridge, TN: Oak Ridge National Laboratory, ORNL/CDIAC-105.CrossRefGoogle Scholar
Liss, P.S.Merlivat, L. 1986. Air-sea exchange rates: Introduction and synthesis. In Buat-Menard, P., ed. The role of air-sea exchange in geochemical cycling. Dordrecht: Reidel, 113127.Google Scholar
Metzl, N. 2009. Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007). Deep-Sea Research II, 56, 607619.Google Scholar
Millero, F.J., Zhang, J.Z., Fiol, S., Sotolongo, S., Roy, R., Lee, K.Mane, S. 1993. The use of buffers to measure the pH of seawater. Marine Chemistry, 44, 143152.CrossRefGoogle Scholar
Morán, X.A.G.Estrada, M. 2002. Phytoplanktonic DOC and POC production in the Bransfield and Gerlache Straits as derived from kinetic experiments of 14C incorporation. Deep-Sea Research II, 49, 769786.CrossRefGoogle Scholar
Roy, R.N., Roy, L.N., Vogel, K.M., Moore, C.P., Pearson, T., Good, C.E., Millero, F.J.Campbell, D.M. 1993. Determination of the ionization constance of cabonic acid in seawater. Marine Chemistry, 44, 249268.Google Scholar
Roy, R.N., Roy, L.N., Vogel, K.M., Porter-Moore, C., Pearson, T., Good, C.E., Millero, F.J.Campbell, D.M. 1994. Erratum for: the dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry, 45, 337.Google Scholar
Scott, F.J., Davidson, A.T.Marchant, H.J. 2000. Seasonal variation in plankton, submicrometre particles and size-fractionated dissolved organic carbon in Antarctic coastal waters. Polar Biology, 23, 635643.Google Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C.Iannuzzi, R.A. 2008. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Research II, 55, 20412058.Google Scholar
Stoll, M.H.C., De Baar, H.J.W., Hoppema, M.Fahrbach, E. 1999. New early winter fCO2 data reveal continuous uptake of CO2 by the Weddell Sea. Tellus, B51, 679687.CrossRefGoogle Scholar
Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W.Sutherland, S.C. 1993. Seasonal-variation of CO2 and nutrients in the high-latitude surface oceans - a comparative study. Global Biogeochemical Cycles, 7, 843878.CrossRefGoogle Scholar
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tillbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J.Nojiri, Y. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II, 49, 16011622.CrossRefGoogle Scholar
Takahashi, T. et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research II, 56, 554577.Google Scholar
Vaqué, D., Guixa-Boixereu, N., Gasol, J.M.Pedrós-Alió, C. 2002. Distribution of microbial biomass and importance of protists in regulating prokaryotic assemblages in three areas close to the Antarctic Peninsula in spring and summer 1995/96. Deep-Sea Research II, 49, 847867.Google Scholar
Wanninkhof, R. 1992. Relationship between wind-speed and gas-exchange over the ocean. Journal of Geophysical Research-Oceans, 97, 73737382.Google Scholar
Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203205.Google Scholar
Yager, P.L., Wallace, D.W.R., Johnson, K.M., Smith, W.O., Minnett, P.J.Deming, J.W. 1995. The northeast water polynya as an atmospheric CO2 sink - a seasonal rectification hypothesis. Journal of Geophysical Research-Oceans, 100, 43894398.Google Scholar
Zapata, M., Rodriguez, F.Garrido, J.L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195, 2945.CrossRefGoogle Scholar