Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-06T01:14:19.067Z Has data issue: false hasContentIssue false

The June 2022 extreme warm event in central West Antarctica

Published online by Cambridge University Press:  30 October 2023

Heitor Evangelista
Affiliation:
Rio de Janeiro State University/LARAMG, Pavilhão Haroldo L. Cunha, Subsolo, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, Brazil
Luciana F. Prado*
Affiliation:
Faculdade de Oceanografia, Rio de Janeiro State University, Rua São Francisco Xavier, 524, 4° andar, Bloco E, Maracanã, Rio de Janeiro, RJ, Brazil
Irina V. Gorodetskaya
Affiliation:
 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
Heber Reis Passos
Affiliation:
National Institute for Space Research - INPE, Av dos Astronautas, 1758, Jardim da Granja, São Jose dos Campos, SP, Brazil
Franco Nadal Villela
Affiliation:
Instituto Nacional de Meteorologia - INMET, Alameda Campinas, 433, Jardim Paulista, São Paulo, SP, Brazil
Marcelo Sampaio
Affiliation:
National Institute for Space Research - INPE, Av dos Astronautas, 1758, Jardim da Granja, São Jose dos Campos, SP, Brazil
Elaine Alves dos Santos
Affiliation:
Rio de Janeiro State University/LARAMG, Pavilhão Haroldo L. Cunha, Subsolo, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, Brazil
Carla M.C. de Brito
Affiliation:
Rio de Janeiro State University/LARAMG, Pavilhão Haroldo L. Cunha, Subsolo, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, Brazil

Abstract

The Antarctic surface mass balance has been shown to be sensitive to the impacts of atmospheric rivers (ARs), which bring anomalous amounts of both moisture and heat from lower latitudes poleward. Therefore, describing the characteristics of ARs and their intensity and frequency in the Antarctic regions by applying detection algorithms became a key method to evaluating their impacts on the surface mass balance and melting events. Several intense AR events have influenced Antarctica during the year 2022, and here we report an event with a peak on 10 June 2022 that was detected at 84°S, having a potential impact on West Antarctica. The extreme warm event originated in the Southern Pacific subtropical region and evolved towards the Southern Ocean, crossing the northern Antarctic Peninsula, before reaching as far as most inland regions in Antarctica, different from other typical ARs that are mostly restricted to the continental coast.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkeley Earth. 2022. Antarctic Heatwave: A Rapid Analysis of the March 2022 Dome C Record Heatwave. Retrieved from https://berkeleyearth.org/antarctic-heatwave-rapid-attribution-review-dome-c-record/ (accessed 22 July 2022).Google Scholar
Bozkurt, D., Rondanelli, R., Marin, J.C. & Garreaud, R. 2018. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. Journal of Geophysical Research - Atmospheres, 123, 10.1002/2017JD027796.CrossRefGoogle Scholar
González, R., Toledano, C., Román, R., Mateos, D., Asmi, E., Rodriguez, E., et al. 2020. Characterization of stratospheric smoke particles over the Antarctica by remote sensing instruments. Remote Sensing, 12, 10.3390/rs12223769.CrossRefGoogle Scholar
González-Herrero, S., Barriopedro, D., Trigo, R.M., López-Bustins, J.A. & Olivia, M. 2022. Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Communications Earth & Environment, 3, 10.1038/s43247-022-00450-5.CrossRefGoogle Scholar
Gorodetskaya, I.V., Silva, T., Schmithüsen, H. & Hirasawa, N. 2020. Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land coast, East Antarctica. Advances in Atmospheric Sciences, 37, 10.1007/s00376-020-9221-8.CrossRefGoogle Scholar
Gorodetskaya, I.V., Tsukernik, M., Claes, K., Ralph, M.F., Neff, W.D. & Van Lipzig, N.P.M. 2014. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41, 10.1002/2014GL060881.CrossRefGoogle Scholar
Gutiérrez, J.M., Jones, R.G., Narisma, G.T., Alves, L.M., Amjad, M., Gorodetskaya, I.V., et al. 2021. Atlas. In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al., eds, Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 10.1017/9781009157896.021Google Scholar
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 19992049.CrossRefGoogle Scholar
Hoffman, J.S., Clark, P.U., Parnell, A.C. & Feng, H.E. 2017. Regional and global sea-surface temperatures during the last interglaciation. Science, 355, 10.1126/science.aai84.CrossRefGoogle ScholarPubMed
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorogical Society, 77, 437471.2.0.CO;2>CrossRefGoogle Scholar
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al., 2015. The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93, 10.2151/jmsj.2015-001.Google Scholar
Liang, K., Wang, J., Luo, H. & Yang, Q. 2023. The role of atmospheric rivers in Antarctic sea ice variations. Geophysical Research Letters, 50, 10.1029/2022GL102588.CrossRefGoogle Scholar
Liu, Y., Moore, J.C., Cheng, X., Gladstone, R.M., Bassis, J.N., Liu, H., et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America, 112, 32633268.CrossRefGoogle ScholarPubMed
Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F.M. 2018. The role of atmospheric rivers in extratropical and polar hydroclimate. Journal of Geophysical Research - Atmospheres, 123, 10.1029/2017JD028130.CrossRefGoogle Scholar
Nicolas, J.P., Vogelmann, A.M., Scott, R.C., Wilson, A.B., Cadeddu, M.P., Bromwich, D.H., et al. 2017. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 8, 10.1038/ncomms15799.CrossRefGoogle ScholarPubMed
Paolo, F., Padman, L., Fricker, H.A., Adusumilli, S., Howard, S.L. & Siegfried, M.R. 2018. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nature Geoscience, 1, 10.1038/s41561-017-0033-0.Google Scholar
Parish, T.R. & Bromwich, D.H. 2007. Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Monthly Weather Review, 135, 10.1175/mwr3374.1.CrossRefGoogle Scholar
Smith, B., Fricker, H.A., Gardner, A.S., Medley, B., Nilsson, J., Paolo, F.S., et al. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 10.1126/science.aaz5845.CrossRefGoogle ScholarPubMed
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. & Ngan, F. 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96, 10.1175/BAMS-D-14-00110.1.CrossRefGoogle Scholar
Terpstra, A., Gorodetskaya, I.V. & Sodemann, H. 2021. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: an atmospheric river case study. Journal of Geophysical Research - Atmospheres, 126, 10.1029/2020JD033617.CrossRefGoogle Scholar
Turner, J., Marshall, G.J., Clem, K., Colwell, S., Phillips, T. & Lu, H. 2019. Antarctic temperature variability and change from station data. International Journal of Climatology, 40, 10.1002/joc.6378.Google Scholar
Wille, J.D., Favier, V., Gorodetskaya, I.V., Agosta, C., Kittel, C., Beeman, J.C., et al. 2021. Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research - Atmospheres, 126, 10.1029/2020JD033788.CrossRefGoogle Scholar
Wille, J.D., Favier, V., Jourdain, N.C., Kittel, C., Turton, J.V., Agosta, C., et al. 2022. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications Earth & Environment, 3, 10.1038/s43247-022-00422-9.CrossRefGoogle Scholar
Yamane, M., Yokoyama, Y., Abe-Ouchi, A., Obrochta, S., Saito, F., Moriwaki, K. & Matsuzaki, H. 2015. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics. Nature Communications, 6, 10.1038/ncomms8016.CrossRefGoogle ScholarPubMed