Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T05:00:17.898Z Has data issue: false hasContentIssue false

Interannual variability of net community production and air-sea CO2 flux in a naturally iron fertilized region of the Southern Ocean (Kerguelen Plateau)

Published online by Cambridge University Press:  27 June 2011

Marie Paule Jouandet*
Affiliation:
Laboratoire d'Océanographie Physique et Biogéochimique, Campus de Luminy, case 901, 13288 Marseille CEDEX 09, France
Stephane Blain
Affiliation:
CNRS, UMR7621, LOMIC, Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France UPMC Université Paris 06, UMR 7621, LOMIC, Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
Nicolas Metzl
Affiliation:
LOCEAN-IPSL, UMR 7159, CNRS, Université P. et M. Curie-Case 100, 4 place Jussieu, F-75252 Paris CEDEX 5, France
Mathieu Mongin
Affiliation:
CSIRO Marine and Atmospheric Research, Hobart, TAS 7001, Australia

Abstract

The interannual variability of net community production (NCP) and air-sea CO2 flux in a naturally iron fertilized and productive area of the Southern Ocean (Kerguelen plateau) was investigated using a 1D biogeochemical model driven by satellite chlorophyll, sea surface temperature and wind speed data for the 1997–2007 period. The model simulates the low fCO2 and dissolved inorganic carbon (DIC) measured during summers 2004–05, 2005–06, 2006–07 and the high NCP derived from a seasonal carbon budget in the surface waters of these blooms. Although satellite data show high interannual variability in the dynamics and magnitude of the bloom during the 1997–2007 decade, the simulated interannual variability of the NCP was only ± 14%. This unexpected result could be due to the combined effect of both the duration and the start date of the bloom, the latter determining the depth of the mixed layer used to compute the NCP. In the productive area, the interannual variability of air-sea CO2 flux (± 13%) was not only driven by the biological effect but also by the solubility effect. Our results contrast with previous studies in the high nutrient, low chlorophyll regions of the Southern Ocean.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, N.R., Hansell, D.A., Carlson, C.A.Gordo, L.I. 1998. Distribution of CO2 species, estimates of net community production, and air-sea CO2 exchange in the Ross Sea polynya. Journal of Geophysical Research, 103, 28832896.CrossRefGoogle Scholar
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brusaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefèvre, D., Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.-H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L.Wagener, T. 2007. Impacts of natural iron fertilization on the Southern Ocean. Nature, 446, 10701074.CrossRefGoogle Scholar
Bopp, L., Monfray, P., Aumont, O., Dufresne, J.L., Le Treut, H., Madec, G., Terray, L.Orr, J.C. 2001. Potential impact of climate change on marine export production. Global Biogeochemical Cycles, 15, 8199.CrossRefGoogle Scholar
Brévière, E., Metzl, N., Poisson, A.Tilbrook, B. 2006. Changes of the oceanic CO2 sink in the Eastern Indian sector of the Southern Ocean. Tellus, 58B, 438446.CrossRefGoogle Scholar
Brzezinski, M.A. 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347357.CrossRefGoogle Scholar
Carton, J.A., Giese, B.S.Grodsky, S.A. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research, 110, 10.1029/2004JC002817.CrossRefGoogle Scholar
Cassar, N., Bender, M.L., Barnett, B.A., Fan, S., Moxim, W.J., Levy II, H.Tilbrook, B. 2007. The Southern Ocean biological response to aeolian iron deposition. Science, 317, 10671070.CrossRefGoogle ScholarPubMed
Fasham, M.J.R., Flynn, K.J., Pondaven, P., Anderson, T.R.Boyd, P. 2006. Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles: a comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment. Deep-Sea Research I, 53, 333366.CrossRefGoogle Scholar
Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M.Hill, P. 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophysical Research Letters, 33, 10.1029/2006GL026817.Google Scholar
Hoppema, M., Middag, R., De Baar, H.J.W., Fahrbach, E., van Weerlee, H.Thomas, E.M. 2007. Whole season net community production in the Weddell Sea. Polar Biology, 31, 101111.CrossRefGoogle Scholar
Ishii, M., Inoue, H.Y.Matsueda, H. 2002. Net community production in the marginal ice zone and its importance for the variability of the oceanic pCO2 in the Southern Ocean south of Australia. Deep-Sea Research II, 49, 16911706.CrossRefGoogle Scholar
Ishii, M., Inoue, H.Y., Matsueda, H.Tanoue, E. 1998. Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Southern Ocean. Deep-Sea Research I, 45, 11871209.CrossRefGoogle Scholar
Jabaud-Jan, A., Metzl, N., Brunet, C., Poisson, A.Schauer, B. 2004. Interannual variability of the carbon dioxide system in the Southern Indian Ocean (20°S–60°S): the impact of a warm anomaly in austral summer 1998. Global Biogeochemical Cycles, 18, 120.CrossRefGoogle Scholar
Jouandet, M.P., Blain, S., Metzl, N., Trull, T.W.Obernosterer, I. 2008. A seasonal carbon budget for a naturally iron fertilized bloom over the Kerguelen plateau in the Southern Ocean. Deep-Sea Research II, 55, 856867.CrossRefGoogle Scholar
Karl, D.M., Tilbrook, B.D.Tien, G. 1991. Seasonal coupling of organic matter production and particule flux in the western Brandsfield Strait, Antartica. Deep-Sea Research II, 38, 10971126.CrossRefGoogle Scholar
Louanchi, F., Metzl, N.Poisson, A. 1996. Modeling the monthly sea surface pCO2 fields in the Indian Ocean. Marine Chemistry, 55, 265279.CrossRefGoogle Scholar
Metzl, N. 2009. Decadal increase of ocean carbon dioxide in the southern Indian Ocean surface waters (1991–2007). Deep-Sea Research II, 56, 607619.CrossRefGoogle Scholar
Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A.Schauer, B. 2006. Summer and winter air-sea CO2 fluxes in the Southern Ocean. Deep-Sea Research I, 53, 15481563.CrossRefGoogle Scholar
Moore, J.K.Abbott, M.R. 2002. Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations. Journal of Marine System, 37, 6986.CrossRefGoogle Scholar
Mosseri, J., Queguiner, B., Armand, L.Cornet-Barthau, V. 2008. Impact of iron on silicon utilization by diatoms in the Southern Ocean: a case of Si/N cycle decoupling in a naturally iron-enriched area. Deep-Sea Research II, 55, 801819.CrossRefGoogle Scholar
Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J.Upstill-Goddad, R.C. 2000. In-situ elevation of air sea gas exchange parametrizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14, 373387.CrossRefGoogle Scholar
Obernosterer, I., Christaki, U., Lefevre, D., Catala, P., van Wambeke, F.Lebaron, P. 2008. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep-Sea Research II, 55, 777789.CrossRefGoogle Scholar
Pondaven, P., Ruiz-Pino, D., Fravalo, C., Treguer, P.Jeandel, C. 2000. Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995 - a 1-D modelling study. Deep-Sea Research I, 47, 223257.CrossRefGoogle Scholar
Rubin, S.I., Takahashi, T., Chipman, D.W.Goddard, J.G. 1998. Primary productivity and nutrient utilization ratios in the Pacific sector of the Southern Ocean based on seasonal changes in seawater chemistry. Deep-Sea Research II, 45, 12111234.CrossRefGoogle Scholar
Sullivan, C.W., Arrigo, K.R., McClain, C.R., Comiso, J.C.Firestone, J. 1993. Distributions of phytoplankton blooms in the Southern Ocean. Science, 262, 18321837.CrossRefGoogle ScholarPubMed
Sweeney, C., Smith, W.O., Hales, B., Bidigare, R., Carlson, C.A., Codispoti, L.A., Gordon, L.I., Hansell, D.A., Millero, F.J., Park, M.-O.K.Takashi, T. 2000. Nutrient and carbon removal ratios and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II, 47, 33953421.CrossRefGoogle Scholar
Tyrrell, T., Merico, A., Waniek, J.J., Wong, C.S., Metzl, N.Whitney, F. 2005. Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions. Journal of Geophysical Research, 110, 112.CrossRefGoogle Scholar
Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 73737382.CrossRefGoogle Scholar
Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 8, 347359.CrossRefGoogle Scholar