Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T06:58:41.214Z Has data issue: false hasContentIssue false

Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica

Published online by Cambridge University Press:  21 February 2013

Daniel Remias*
Affiliation:
Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
Hans Wastian
Affiliation:
Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
Cornelius Lütz
Affiliation:
Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
Thomas Leya
Affiliation:
Fraunhofer IBMT, 14476 Potsdam-Golm, Germany

Abstract

In Antarctica, mass accumulations of psychrophilic algae cause striking phenomena like green, orange, or red snow. This occurs during summer, when coastal snowfields start to melt, become waterlogged and photoautotrophs can thrive. Chloromonas polyptera (Fritsch) Hoham, Mullet & Roemer is a unicellular species that causes orange snow in the vicinity of penguin rockeries. It has been recognized for many decades because of the distinct habitat and the characteristic morphology of cysts with elongated flanges on the outer cell wall. However, closer investigations concerning the ecology or physiology have been sparse so far. Field material was collected from two sites on the Antarctic Peninsula to find out more about metabolic and cellular strategies. The results were compared with a closely related species from high alpine locations, Chloromonas nivalis (Chodat) Hoham & Mullet. Despite the geographical distance, C. polyptera shares several physiological strategies with the alpine relative, such as the formation of cyst stages, saccharose and glycerol as main soluble carbohydrates and the abundant accumulation of the carotenoid astaxanthin. Moreover, photosynthesis is adapted to temperatures of about 1°C. The molecular phylogeny confirmed a close relationship of C. polyptera to other Chloromonas species isolated from snow. Chloromonas polyptera seems to be exclusive to coastal Antarctic ecosystems influenced by animal nutrient input.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, M. 1979. Some ecological and taxonomic observations on the colored snow algae found in Rumpa and Skarvsnes, Antarctica. Memoirs of National Institute of Polar Research Special Issue, 11, 2734.Google Scholar
Bidigare, R.R., Ondrusek, M.E., Kennicutt, M.C. II,, Iturriaga, R., Harvey, H.R., Hoham, R.W.Macko, S.A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. Journal of Phycology, 29, 427434.CrossRefGoogle Scholar
Chapman, B.E., Roser, D.J.Seppelt, R.D. 1994. 13C NMR analysis of Antarctic cryptogam extracts. Antarctic Science, 6, 295305.CrossRefGoogle Scholar
Elbein, A.D., Pan, Y.T., Pastuszak, I.Carroll, D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R27R.CrossRefGoogle ScholarPubMed
Ettl, H. 1983. Chlorophyta I. Phytomonadina. Stuttgart: Gustav Fischer, 807 pp.Google Scholar
Fritsch, F.E. 1912. Freshwater algae collected in the South Orkney Islands by Mr. R.N. Rudmose-Brown, B.Sc., of the Scottish National Antarctic Expedition, 1902–04. Journal of the Linnean Society London Botany, 40, 293338.CrossRefGoogle Scholar
Fujii, M., Takano, Y., Kojima, H., Hoshino, T., Tanaka, R.Fukui, M. 2010. Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microbial Ecology, 59, 466475.CrossRefGoogle Scholar
Garric, R.K. 1965. The cryoflora of the Pacific northwest. American Journal of Botany, 52, 18.CrossRefGoogle Scholar
Hoham, R.W. 1975. The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia, 14, 213226.CrossRefGoogle Scholar
Hoham, R.W.Duval, B. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Jones, H.G., Pomeroy, J.W., Walker, D.A. & Hoham, R.W.,eds. Snow ecology. Cambridge: Cambridge University Press, 168228.Google Scholar
Hoham, R.W.Mullet, J.E. 1977. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia, 16, 5368.CrossRefGoogle Scholar
Hoham, R.W.Mullet, J.E. 1978. Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella. Phycologia, 17, 106107.CrossRefGoogle Scholar
Hoham, R.W., Mullet, J.E.Roemer, S.C. 1983. The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Canadian Journal of Botany, 61, 24162429.CrossRefGoogle Scholar
Hoham, R.W., Roemer, S.C.Mullet, J.E. 1979. The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia, 18, 5570.CrossRefGoogle Scholar
Hoham, R.W., Bonome, T.A., Martin, C.W.Leebens-Mack, J.H. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of Phycology, 38, 10511064.CrossRefGoogle Scholar
Hoham, R.W., Berman, J.D., Rogers, H.S., Felio, J.H., Ryba, J.B.Miller, P.R. 2006. Two new species of green snow algae from upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia, 45, 319330.CrossRefGoogle Scholar
Kol, E. 1968. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In Elster, H.J. & Ohle W., eds. Die Binnengewässer, band XXIV. Stuttgart: Schweizerbart'sche, 216 pp.Google Scholar
Komárek, J.Nedbalová, L. 2007. Green cryosestic algae. In Seckbach, J., ed. Cellular origin, life in extreme habitats and astrobiology, vol. 11. Algae and cyanobacteria in extreme environments. Part 4: phototrophs in cold environments. Dordrecht: Springer, 323344.Google Scholar
Lemoine, Y.Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis Research, 106, 155177.CrossRefGoogle ScholarPubMed
Leya, T., Rahn, A., Lütz, C.Remias, D. 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiology Ecology, 67, 432443.CrossRefGoogle ScholarPubMed
Ling, H.U. 1996. Snow algae of the Windmill Islands region, Antarctica. Hydrobiologia, 336, 99106.CrossRefGoogle Scholar
Ling, H.U.Seppelt, R.D. 1998. Snow algae of the Windmill Islands, continental Antarctica. 3. Chloromonas polyptera (Volvocales, Chlorophyta). Polar Biology, 20, 320324.CrossRefGoogle Scholar
Marshall, W.A.Chalmers, M.O. 1997. Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography, 20, 585594.CrossRefGoogle Scholar
Muramoto, K., Kato, S., Shitara, T., Hara, Y.Nozaki, H. 2008. Morphological and genetic variation in the cosmopolitan snow alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japananese mountainous area. Cytologia, 73, 9196.CrossRefGoogle Scholar
Muramoto, K., Nakada, T., Shitara, T., Hara, Y.Nozaki, H. 2010. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. European Journal of Phycology, 45, 2737.CrossRefGoogle Scholar
Novis, P.M., Hoham, R.W., Beer, T.Dawson, M. 2008. Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. Journal of Phycology, 44, 10011012.CrossRefGoogle ScholarPubMed
Porra, R.J., Thompson, W.A.Kriedemann, P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384394.CrossRefGoogle Scholar
Posada, D.Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793808.CrossRefGoogle ScholarPubMed
Posada, D.Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817818.CrossRefGoogle ScholarPubMed
Pröschold, T., Marin, B., Schlösser, U.G.Melkonian, M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist, 152, 265300.CrossRefGoogle ScholarPubMed
Remias, D.Lütz, C. 2007. Characterization of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Studies, 124, 8594.CrossRefGoogle Scholar
Remias, D., Albert, A.Lütz, C. 2010b. Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica, 48, 302312.CrossRefGoogle Scholar
Remias, D., Lütz-Meindl, U.Lütz, C. 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40, 259268.CrossRefGoogle Scholar
Remias, D., Karsten, U., Lütz, C.Leya, T. 2010a. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243, 7386.CrossRefGoogle ScholarPubMed
Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H.Lütz, C. 2012. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiology Ecology, 79, 638648.CrossRefGoogle ScholarPubMed
Roser, D.J., Melick, D.R., Ling, H.U.Seppelt, R.D. 1992. Polyol and sugar content of terrestrial plants from continental Antarctica. Antarctic Science, 4, 413420.CrossRefGoogle Scholar
Thomas, D.N., Fogg, G.E., Convey, P., Fritsen, C.H., Gili, J.-M., Gradinger, R., Laybourn-Parry, J., Reid, K.Walton, D.W.H. 2008. The biology of polar regions. Cambridge: Cambridge University Press, 416 pp.CrossRefGoogle Scholar
Wille, N. 1903. Algologische Notizen IX–XIV. Nyt Magazin for Naturvidenskaberne, 41, 89185.Google Scholar