Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T18:42:15.013Z Has data issue: false hasContentIssue false

Impact of expected global warming on C mineralization in maritime Antarctic soils: results of laboratory experiments

Published online by Cambridge University Press:  02 July 2010

Juliana Vanir de Souza Carvalho
Affiliation:
Departamento de Química, Universidade Federal de Viçosa, Av. PH Rolfs, Viçosa, Minas Gerais, 36570-000, Brazil
Eduardo de Sá Mendonça*
Affiliation:
Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Campus Alegre, 2950-000, Alegre, Espírito Santo, Brasil. Orientador no Programa de Pós-graduação em Solos e Nutrição de Plantas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
Rui Tarcísio Barbosa
Affiliation:
Departamento de Química, Universidade Federal de Viçosa, Av. PH Rolfs, Viçosa, Minas Gerais, 36570-000, Brazil
Efrain Lázaro Reis
Affiliation:
Departamento de Química, Universidade Federal de Viçosa, Av. PH Rolfs, Viçosa, Minas Gerais, 36570-000, Brazil
Paulo Negrais Seabra
Affiliation:
Centro de Pesquisas e Desenvolvimento, Petrobras, Av. Horácio Macedo 950, Rio de Janeiro, Rio de Janeiro, 21941-915, Brazil
Carlos Ernesto G.R. Schaefer
Affiliation:
Departamento de Solos, Universidade de Viçosa, Minas Gerais, 36570-000, Brazil
*
*corresponding author: [email protected]

Abstract

This study concerned the fragility of maritime Antarctic soils under increasing temperature, using the C dynamics and structural characteristics of humic substances as indicators. Working with four representative soils from King George Island (Lithic Thiomorphic Cryosol (LTC1 and LTC2), Ornithogenic Cryosol (OG) and Gelic Organosol (ORG)) we evaluated the total organic C and nitrogen contents, the oxidizable C and humic substances. Soil samples were incubated to assess the amount of C potentially mineralizable at temperatures typical of an Antarctic summer (5–14°C). Humic acids showed a higher aliphatic character and a smaller number of condensed aromatic groups, which suggests that these molecules from Antarctic soils are generally less resistant to microbial degradation than humic acids molecules from other regions. Based on 13C NMR spectra of MAS and CP/MAS, samples of soil humic acids of mineral soils (LTC1 and LTC2) have a higher content of aliphatic C, and heteroatom C, with lower levels of carbonyl and aromatic C, when compared with organic matter-rich soils (OG and ORG). Increasing incubation temperature led to a higher rate of mineralizable C in all soils. A sequence of soil fragility was suggested - LTC1 and LTC2 > OG > ORG - which showed a correlation with the Q10 coefficient and the ratio of labile and recalcitrant C fractions of soil organic matter (R2 = 0.83).

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beyer, L., White, D.M., Pingpank, K.Bolter, M. 2004. Composition and transformation of soils organic matter in Cryosols and Gelic Histosols in coastal eastern Antarctica (Casey Station, Wilkes Land). In Kimble, J., ed. Cryosols - permafrost affected soils. Berlin: Springer, 525557.Google Scholar
Bloom, P.R.Leenheer, J.A. 1989. Vibrational, electronic, and high-energy spectroscopic methods or characterizing humic substances. In Hayes, M.H.B., MacCarthy, P., Malcolm, R.L. & Swift, R.S.,eds. Humic substances II. In search of structure. Chichester: Wiley, 409446.Google Scholar
Bokhorst, S., Huiskes, A., Convey, P.Aerts, R. 2007. Climate change effects on organic to matter decomposition rates in ecosystems from the maritime Antarctic and Falkland Islands. Global Change Biology, 13, 26422653.CrossRefGoogle Scholar
Bremner, J.M.Mulvaney, C.S. 1982. Nitrogen – total. In Page, A.L., Miller, R.H. & Keeney, D.R., eds. Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy Monograph No. 9. Madison: Agronomy Society of America, 595624.Google Scholar
Bron, I.U., Ribeiro, R.V., Cavalini, F.C., Jacomino, A.P.Trevisan, M.J. 2005. Temperature-related changes in respiration and Q10 coefficient of guava. Scientia Agricola, 62, 458463.CrossRefGoogle Scholar
Brown, S.B. 1980. Ultraviolet and visible spectroscopy. In Brown, S.B., ed. An introduction to spectroscopy for biochemists. New York: Academic Press, 1469.Google Scholar
Campbell, I.B.Claridge, G.G.C. 1987. Antarctica: soils, weathering process and environment. Amsterdam: Elsevier, 368 pp.Google Scholar
Chan, K.Y., Bowman, A.Oates, A. 2001. Soil oxidizable organic carbon fractions and quality changes in oxic paleustalf to under different pasture leys. Soil Science, 166, 6167.CrossRefGoogle Scholar
Chen, Y., Senesi, N.Schnitzer, M. 1977. Information provide on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41, 352358.CrossRefGoogle Scholar
Curl, E.Rodriguez-Kabana, R. 1972. Microbial interactions. In Wilkinson, R.E., ed. Research methods in weed science. Atlanta, GE: Southern Weed Science Society, 162194.Google Scholar
Davidson, E.A.Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165173.CrossRefGoogle ScholarPubMed
Davidson, E.A., Janssens, I.A.Luo, Y. 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154164.CrossRefGoogle Scholar
Dieckow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D.P.Kögel-Knabner, I. 2005. Organic N forms of a subtropical Acrisol under no-till cropping systems as assessed by acid hydrolysis and solid state NMR spectroscopy. Biology and Fertility of Soils, 42, 153158.CrossRefGoogle Scholar
Fonseca, R.A.D. 2005. Caracterização potenciométrica de ácidos húmicos utilizando análise de componentes principais. MSc thesis, Federal University of Viçosa, 70 pp. [Unpublished.]Google Scholar
Funarbe. 2007. SAEG - Sistema para análises estatísticas. (Ver. 9.0). Viçosa, MG: Fundação Arthur Bernardes.Google Scholar
IPCC. 2007. Summary for Policymakers. In Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J. & Hanson, C.E., eds. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 722.Google Scholar
Janzen, H.H. 2004. Carbon cycling in earth systems - the soil science perspective. Agriculture, Ecosystems & Environment, 104, 399417.CrossRefGoogle Scholar
MacCarthy, P.E.Rice, J.A. 1985. Spectroscopic methods (to other than NMR) will be determining functionality in humic substances. In Aiken, G.R., McKnight, D., Wershaw, R.L. & MacCarthy, P.,eds. Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Chichester: Wiley, 527560.Google Scholar
Martines, A.M., Andrade, C.A.Cardoso, E.J.B. 2006. Mineralização do carbono orgânico em solos tratados com lodo de curtume. Pesquisa Agropecuária Brasileira, 41, 11491155.CrossRefGoogle Scholar
Matos, E.S., Mendonça, E.S., Lima, P.C., Coelho, M.S., Mateus, R.F.Cardoso, I.M. 2008. Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Revista Brasileira de Ciência do Solo, 32, 20272035.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Days, L., Simas, F.N.B., Benites, V.Mendonça, E.S. 2006. Ornithogenic Gelisols (Cryosols) from maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal, 70, 13701376.CrossRefGoogle Scholar
Mikan, C.J., Schimel, J.P.Doyle, A.P. 2002. Temperature controls of microbial respiration in Arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34, 17851795.CrossRefGoogle Scholar
Moreira, F.M.S.Siqueira, J.O. 2006. Microbiologia e Bioquímica do Solo, 2nd ed. Lavras, Brazil: Editora UFLA, 729 pp.Google Scholar
Myrcha, A., Pietr, S.J.Tatur, A. 1983. The role of pygoscelid penguin rockeries in nutrient cycles at Admiralty Bay, King George Island. In Siegfried, W.R., Condy, P.R. & Laws, R.M.,eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 156162.Google Scholar
Rosell, R.A., Andriulo, A.E., Schnitzer, M., Crespo, M.B.Miglierina, A.M. 1989. Humic acids properties of a soil Argiudoll to under two tillage systems. The Science of the Total Environment, 81/82, 391400.CrossRefGoogle Scholar
Silva, I.R.Mendonça, E.S. 2007. Matéria Orgânica do Solo. In Novais, R.F. et al., eds. Fertilidade do Solo. Viçosa: Sociedade Brasileira de Ciências do Solo, 275374.Google Scholar
Silverstein, R.M., Bassler, G.C.Morril, T.C. 1994. Identificação espectrométrica de compostos orgânicos. Rio de Janeiro: Guanabara Koogan, 299 pp.Google Scholar
Simas, F.N.B. 2006. Solos da Baía do Almirantado, Antártica Marítima: Mineralogia, Gênese, Classificação e Biogeoquímica. PhD thesis, Federal University of Viçosa, 154 pp. [Unpublished].Google Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., Gomes, M.R.M.Costa, L.M. 2007. Ornithogenic Cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 191203.CrossRefGoogle Scholar
Steelink, C.Tollin, G. 1985. Soil free radicals. In McLaren, A.D. & Peterson, G.M., ed. Soil biochemistry, vol. 5. New York: Dekker, 147169.Google Scholar
Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactions. Chichester: Wiley, 443 pp.Google Scholar
Stotzky, G. 1965. Microbial respiration. In Black, C., ed., Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, WI: American Society Agronomy, 15501572.Google Scholar
Swift, R.S. 1996. Organic to matter characterization. In Sparks, D.L.,eds. Methods of soil analysis. Part 3. Chemical methods. Madison, WI: Soil Science Society of America Book Series, No. 5, 10111020.Google Scholar
Tatur, A., Myrcha, A.Niegodzisz, J. 1997. Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biology, 17, 405417.CrossRefGoogle Scholar
Tsutsuki, K.Kuwatsuka, S. 1979. Soil chemical studies on humic acids: VII. pH dependent nature of the ultraviolet and visible absorption spectra of humic acids. Soil Science and Plant Nutrition, 25, 373384.CrossRefGoogle Scholar
Yeomans, J.C.Bremner, J.M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 14671476.CrossRefGoogle Scholar