Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T15:55:08.933Z Has data issue: false hasContentIssue false

Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean

Published online by Cambridge University Press:  27 June 2011

Guillaume Massé*
Affiliation:
Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK LOCEAN, UMR7159 CNRS/UPMC/IRD/MNHN, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France
Simon T. Belt
Affiliation:
Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
Xavier Crosta
Affiliation:
Environnement et Paléoenvironnement Océaniques, UMR5805, Université Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
Sabine Schmidt
Affiliation:
Environnement et Paléoenvironnement Océaniques, UMR5805, Université Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
Ian Snape
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
David N. Thomas
Affiliation:
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
Steven J. Rowland
Affiliation:
Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

Abstract

Concentrations of a highly branched isoprenoid (HBI) diene determined in over 200 sediment samples from the Arctic co-vary with those of an HBI monoene (IP25) shown previously to be a sedimentary sea ice proxy for the Arctic. The same diene, but not monoene IP25, occurred in nine sea ice samples collected from various locations around Antarctica. The diene has been reported previously in Antarctic sea ice diatoms and the 13C isotopic compositions of the diene determined in two Antarctic sea ice samples were also consistent with an origin from sea ice diatoms (δ13C -5.7 to -8.5‰). In contrast, HBIs found in two Antarctic phytoplankton samples did not include the diene but comprised a number of tri- to pentaenes. In sediment samples collected near Adélie Land, East Antarctica, both the diene and the tri- to pentaenes often co-occurred. 13C isotopic compositions of the tri- to pentaenes in three sediment samples ranged from -35 to -42‰ whereas that of the diene in a sediment sample was -18‰. We propose the presence of this isotopically 13C enriched HBI diene in Antarctic sediments to be a useful proxy indicator for contributions of organic matter derived from sea ice diatoms. A ratio of the concentrations of diene/trienes might reflect the relative contributions of sea ice to phytoplanktonic inputs of organic matter to Antarctic sediments.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T., Belt, S.T., Olafsdottir, S., Massé, G. Vare, L.L. 2009. Sea ice and marine climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr bp. The Holocene, 19, 775784.CrossRefGoogle Scholar
Armand, L.K. Leventer, A. 2010. Palaeo sea ice distribution: its reconstruction and significance. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice, 2nd ed. Oxford: Wiley-Blackwell, 333372.Google Scholar
Armand, L.K., Crosta, X., Romero, O. Pichon, J.-J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 93126.CrossRefGoogle Scholar
Barbara, L., Crosta, X., Massé, G. Ther, O. 2010. Deglacial environments in eastern Prydz Bay, East Antarctica. Quaternary Science Reviews, 29, 27312740.CrossRefGoogle Scholar
Belt, S.T., Allard, W.G., Massé, G., Robert, J.-M. Rowland, S.J. 2000. Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochimica et Cosmochimica Acta, 64, 38393851.CrossRefGoogle Scholar
Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C. LeBlanc, B. 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry, 38, 1627.CrossRefGoogle Scholar
Belt, S.T., Massé, G., Vare, L.L., Rowland, S.J., Poulin, M., Sicre, M.-A., Sampei, M. Fortier, L. 2008. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps. Marine Chemistry, 112, 158167.CrossRefGoogle Scholar
Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T. Schmidt, S. 2010. Striking similarities in temporal changes to seasonal sea ice conditions across the central Canadian Arctic Archipelago over the last 7,000 years. Quaternary Science Reviews, 29, 34893504.CrossRefGoogle Scholar
Brown, T.A. 2011. Production and preservation of the Arctic sea ice diatom biomarker IP25. PhD thesis, University of Plymouth, 303 pp. [Unpublished.]Google Scholar
Brown, T.A., Belt, S.T., Philippe, B., Mundy, C.J., Massé, G., Poulin, M. Gosselin, M. 2010. Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biology. 10.1007/s00300-010-0942-5.Google Scholar
Buesseler, K.O., Barber, R.T., Dickson, M.-L., Hiscock, M.R., Moore, J.K. Sambrotto, R. 2003. The effect of marginal ice-edge dynamics on production and export in the Southern Ocean along 1708W. Deep-Sea Research II, 50, 579603.CrossRefGoogle Scholar
Cooke, D.A., Barlow, R., Green, J., Belt, S.T. Rowland, S.J. 1998. Seasonal variations of highly branched isoprenoid hydrocarbons and pigment biomarkers in intertidal sediments of the Tamar estuary, UK. Marine Environmental Research, 45, 309324.CrossRefGoogle Scholar
Coolen, M.J.L., Muyzer, G., Schouten, S., Volkman, J.K. Damsté, J.S.S. 2006. Sulfur and methane cycling during the Holocene in Ace Lake (Antarctica) revealed by lipid and DNA stratigraphy. In Neretin, L.N., ed. Past and present water column anoxia. Berlin: Springer, 4165.CrossRefGoogle Scholar
Costa, E., Dunbar, R.B., Kryc, K.A., Mucciarone, D.A., Brachfeld, S., Roark, E.B., Manley, P.L., Murray, R.W. Leventer, A. 2007. Solar forcing and El Niño–Southern Oscillation (ENSO) influences on productivity cycles interpreted from a late-Holocene high-resolution marine sediment record, Adélie Drift, East Antarctic Margin. United States Geological Survey Open-File Report 2007-1047, 10.3133/of2007-1047.srp036.Google Scholar
Cripps, G.C. 1995. Biogenic hydrocarbons in the particulate material of the water column of the Bellinghausen Sea, Antarctica in the region of the marginal ice zone. Deep-Sea Research II, 42, 11231135.CrossRefGoogle Scholar
Cripps, G.C. Clarke, A. 1998. Seasonal variation in the biochemical composition of particulate material collected by sediment traps at Signy Island, Antarctica. Polar Biology, 20, 414423.CrossRefGoogle Scholar
Crosta, X., Romero, O., Armand, L.K. Pichon, J.-J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 6692.CrossRefGoogle Scholar
Damsté, J.S.S., Rijpstra, W.I.C., Coolen, M.J.L., Schouten, S. Volkman, J.K. 2007. Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica. Organic Geochemistry, 38, 128139.CrossRefGoogle Scholar
Damsté, J.S.S., Muyzer, G., Abbas, B., Rampen, S.W., Massé, G., Allard, W.G., Belt, S.T., Robert, J.M., Rowland, S.J., Moldowan, J.M., Barbanti, S.M., Fago, F.J., Denisevich, P., Dahl, J., Trindade, L.A.F. Schouten, S. 2004. The rise of the rhizosolenid diatoms. Science, 304, 584587.CrossRefGoogle ScholarPubMed
Denis, D., Crosta, X., Barbara, L., Massé, G., Renssen, H., Ther, O. Giraudeau, J. 2010. Sea ice and wind variability during the Holocene in East Antarctica: insight on middle-high latitude coupling. Quaternary Science Reviews, 29, 37093719.CrossRefGoogle Scholar
Denis, D., Crosta, X., Schmidt, S., Carson, D.S., Ganeshram, R.S., Renssen, H., Crespin, J., Ther, O., Billy, I. Giraudeau, J. 2009. Holocene productivity changes off Adélie Land (East Antarctica). Paleoceanography, 24, 10.1029/2008PA001689.CrossRefGoogle Scholar
Fraser, A.D., Massom, R.A. Michael, K.J. 2010. Generation of high-resolution East Antarctic landfast sea ice maps from cloud-free MODIS satellite composite imagery. Remote Sensing of Environment, 114, 28882896.CrossRefGoogle Scholar
Gibson, J.A.E., Trull, T., Nichols, P.D., Summons, R.E. McMinn, A. 1999. Sedimentation of 13C-rich organic matter from Antarctic sea ice algae: a potential indicator of past sea ice extent. Geology, 27, 331334.2.3.CO;2>CrossRefGoogle Scholar
Giles, K.A., Laxon, S.W. Ridout, A.L. 2008. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophysical Research Letters, 35, 10.1029/2008GL035710.CrossRefGoogle Scholar
Hird, S.J. Rowland, S.J. 1995. An investigation of the sources and seasonal variations of highly branched isoprenoid hydrocarbons in intertidal sediments of the Tamar estuary, UK. Marine Environmental Research, 40, 423437.CrossRefGoogle Scholar
Johns, L., Wraige, E.J., Belt, S.T., Lewis, C.A., Massé, G., Robert, J.-M. Rowland, S.J. 1999. Identification of a C25 highly branched isoprenoid (HBI) diene in Antarctic sediments, Antarctic sea ice diatoms and cultured diatoms. Organic Geochemistry, 30, 14711475.CrossRefGoogle Scholar
Kennedy, H., Thomas, D.N., Kattner, G., Haas, C. Dieckmann, G.S. 2002. Particulate organic carbon in Antarctic summer sea ice: concentration and stable carbon isotopic composition. Marine Ecology Progress Series, 238, 113.CrossRefGoogle Scholar
Massé, G., Belt, S.T., Rowland, S.J., Sicre, M.-A. Crosta, X. 2007. Highly branched isoprenoid biomarkers as indicators of sea ice diatoms: implications for historical sea ice records and future predictions. Geophysical Research Abstracts, 9, 04001.Google Scholar
Massé, G., Rowland, S.J., Sicre, M.-A., Jacob, J., Jansen, E. Belt, S.T. 2008. Abrupt climate changes for Iceland during the last millennium: evidence from high-resolution sea ice reconstructions. Earth Planetary Science Letters, 269, 564568.CrossRefGoogle Scholar
Matsumoto, G.I., Matsumoto, E., Sasaki, K. Watanuki, K. 1992. Geochemical features of organic matter in sediment cores from Lützow-Holm Bay, Antarctica. In Whelan, J.K. & Farrington, J.W., eds. Organic matter: productivity, accumulation, and preservation in recent and ancient sediments. New York: Columbia University Press, 142175.Google Scholar
Müller, J., Massé, G., Stein, R. Belt, S.T. 2009. Variability of sea ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience, 2, 772776.CrossRefGoogle Scholar
Nichols, P.D., Volkman, J.K., Palmisano, A.C., Smith, G.A. White, D.C. 1988. Occurrence of an isoprenoid C25 diunsaturated alkene and high neutral lipid content in Antarctic sea ice diatom communities. Journal of Phycology, 24, 9096.CrossRefGoogle Scholar
Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M., Jennings, A.E., Miller, G.H., O'Regan, M., Savelle, J., Serreze, M., St. John, K., White, J.W.C. Wolff, E. 2010. History of sea ice in the Arctic. Quaternary Science Reviews, 29, 17571778.CrossRefGoogle Scholar
Rowland, S.J., Belt, S.T., Wraige, E.J., Massé, G., Roussakis, C. Robert, J.-M. 2001. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia. Phytochemistry, 56, 597602.CrossRefGoogle ScholarPubMed
Schubert, C.J. Calvert, S.E. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research II, 48, 789810.CrossRefGoogle Scholar
Vare, L.L., Massé, G. Belt, S.T. 2010. A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries. The Holocene, 20, 637643.CrossRefGoogle Scholar
Vare, L.L., Massé, G., Gregory, T.R., Smart, C.W. Belt, S.T. 2009. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quaternary Science Reviews, 28, 13541366.CrossRefGoogle Scholar
Venkatesan, M.I. 1988. Organic geochemistry of marine sediments in Antarctic region: marine lipids in McMurdo Sound. Organic Geochemistry, 12, 1327.CrossRefGoogle Scholar