Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-21T23:30:23.073Z Has data issue: false hasContentIssue false

Genetic structure of East Antarctic populations of the moss Ceratodon purpureus

Published online by Cambridge University Press:  10 June 2008

Laurence J. Clarke*
Affiliation:
Institute for Conservation Biology, University of Wollongong, NSW 2522, Australia
David J. Ayre
Affiliation:
Institute for Conservation Biology, University of Wollongong, NSW 2522, Australia
Sharon A. Robinson
Affiliation:
Institute for Conservation Biology, University of Wollongong, NSW 2522, Australia

Abstract

The capacity of the polar flora to adapt is of increasing concern given current and predicted environmental change in these regions. Previous genetic studies of Antarctic mosses have been of limited value due to a lack of variation in the markers or non-specificity of the methods used. We examined the power of five microsatellite loci developed for the cosmopolitan moss Ceratodon purpureus to detect genetically distinct clones and infer the distribution of clones within and among populations from the Windmill Islands, East Antarctica. Our microsatellite data suggest that the extraordinarily high levels of variation reported in RAPD studies were artificially elevated by the presence of contaminants. We found surprisingly little contribution of asexual reproduction to the genetic structure of the Windmill Islands populations, but more loci are required to determine the distribution of individual clones within and among populations. It is apparent that Antarctic populations of C. purpureus possess less genetic diversity than temperate populations, and thus have less capacity for adaptive change in response to environmental variation, but more markers are needed to resolve the total genetic diversity in Antarctic C. purpureus and other mosses.

Type
Biological Science
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, E., Adamson, H. & Seppelt, R.D. 1994. Cement dust contamination of Ceratodon purpureus at Casey, East Antarctica: damage and capacity for recovery. Journal of Bryology, 18, 127137.CrossRefGoogle Scholar
Arnaud-Haond, S., Alberto, F., Teixeira, S., Procaccini, G., Serrão, E.A. & Duarte, C.M. 2005. Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. Journal of Heredity, 96, 434440.CrossRefGoogle ScholarPubMed
Baudouin, L. & Lebrun, P. 2000. An operational Bayesian approach for the identification of sexually reproduced cross-fertilized populations using molecular markers. Proceedings of the International Symposium on Molecular Markers for Charactierizing Genotypes and Identifying Cultivars in Horticulture, Montpellier, France. Leuven: International Society for Horticultural Science, 8193.Google Scholar
Briffa, K.R., Jones, P.D., Schweingruber, F.H., Shiyatov, S.G. & Cook, E.R. 1995. Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature, 376, 156159.CrossRefGoogle Scholar
Burley, J.S. & Pritchard, N.M. 1990. Revision of the genus Ceratodon (Bryophyta). Harvard Papers in Botany, 2, 1776.Google Scholar
Clarke, L.J., Ayre, D.J. & Robinson, S.A. 2008. Somatic mutation and the Antarctic ozone hole. Journal of Ecology, 96, 378385.CrossRefGoogle Scholar
Cronberg, N. 1996. Isozyme relationships within Sphagnum sect. Acutifolia (Sphagnaceae, Bryophyta). Plant Systematics and Evolution, 203, 4164.CrossRefGoogle Scholar
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R. & Prentice, M. 2005. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681685.CrossRefGoogle Scholar
Flatberg, K.I. & Thingsgaard, K. 2003. Taxonomy and geography of Sphagnum tundrae with a description of S. mirum (Sphagnaceae, sect. Squarrosa). The Bryologist, 106, 501515.CrossRefGoogle Scholar
Frankham, R. 2005. Genetics and extinction. Biological Conservation, 126, 131140.CrossRefGoogle Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 4572.CrossRefGoogle ScholarPubMed
Goodwin, I. 1993. Holocene deglaciation, sea level change, and the emergence of the Windmill Islands, Budd Coast, Antarctica. Quaternary Research, 40, 7080.CrossRefGoogle Scholar
Hodgson, D.A., Doran, P.T., Roberts, D. & McMinn, A. 2004. Paleolimnological studies from the Antarctic and subantarctic islands. In Pienitz, R., Douglas, M.S.V. & Smol, J.P., eds. Long-term environmental change in Arctic and Antarctic lakes. Dordrecht: Kluwer, 419474.CrossRefGoogle Scholar
Hodgson, D.A., Roberts, D., McMinn, A., Verleyen, E., Terry, B., Corbett, C. & Vyverman, W. 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology, 36, 385406.Google Scholar
Hsiao, J.-Y. & Rieseberg, L.H. 1994. Population genetic structure of Yushania niitakayamensis (Bambusoideae, Poaceae) in Taiwan. Molecular Ecology, 3, 201208.CrossRefGoogle Scholar
Kappen, L. & Straka, H. 1988. Pollen and spores transport into the Antarctic. Polar Biology, 8, 173180.CrossRefGoogle Scholar
Longton, R.E. 1988. Biology of polar bryophytes and lichens. Cambridge: Cambridge University Press, 342 pp.CrossRefGoogle Scholar
Lovelock, C.E. & Robinson, S.A. 2002. Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell and Environment, 25, 12391250.CrossRefGoogle Scholar
Luckman, B. 1998. Landscape and climate change in the Central Canadian Rockies during the 20th century. Canadian Geographer, 42, 319–226.CrossRefGoogle Scholar
Madronich, S., McKenzie, R.L., Bjorn, L.O. & Caldwell, M.M. 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B-Biology, 46, 519.CrossRefGoogle ScholarPubMed
McDaniel, S.F. & Shaw, A.J. 2005. Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. Molecular Ecology, 14, 11211132.CrossRefGoogle ScholarPubMed
Melick, D.R., Tarnawski, M.G., Adam, K.D. & Seppelt, R.D. 1994. Isozyme variation in three mosses from the Windmill Islands oasis, Antarctica: a preliminary study. Biodiversity Letters, 2, 2127.CrossRefGoogle Scholar
Montagnes, R.J.S., Bayer, R.J. & Vitt, D.H. 1993. Isozyme variation in the moss Meesia triquetra (Meesiaceae). Journal of the Hattori Botanical Laboratory, 74, 155170.Google Scholar
Nei, M. 1972. Genetic distance between populations. American Naturalist, 106, 283291.CrossRefGoogle Scholar
Paetkau, D., Slade, R., Burden, M. & Estoup, A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 5565.CrossRefGoogle Scholar
Peakall, R. & Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288295.CrossRefGoogle Scholar
Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L. & Estoup, A. 2004. GENECLASS2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536539.CrossRefGoogle ScholarPubMed
Rannala, B. & Mountain, J.L. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94, 91979201.CrossRefGoogle ScholarPubMed
Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution, 43, 223225.CrossRefGoogle ScholarPubMed
Selkirk, P.M. 1984. Vegetative reproduction and dispersal of bryophytes on subantarctic Macquarie Island and in Antarctica. Journal of the Hattori Botanical Laboratory, 55, 105111.Google Scholar
Selkirk, P.M., Skotnicki, M.L., Adam, K.D., Connett, M.B., Dale, T., Joe, T.W. & Armstrong, J. 1997. Genetic variation in Antarctic populations of the moss Sarconeurum glaciale. Polar Biology, 18, 344350.Google Scholar
Selkoe, K.A. & Toonen, R.J. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615629.CrossRefGoogle ScholarPubMed
Sherman, C.D.H., Ayre, D.J. & Miller, K.J. 2006. Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia. Coral Reefs, 25, 718.CrossRefGoogle Scholar
Skotnicki, M., Ninham, J. & Selkirk, P.M. 2000. Genetic diversity, mutagenesis and dispersal of Antarctic mosses - a review of progress with molecular studies. Antarctic Science, 12, 363373.CrossRefGoogle Scholar
Skotnicki, M.L., Bargagli, R. & Ninham, J.A. 2002. Genetic diversity in the moss Pohlia nutans on geothermal ground of Mount Rittman, Victoria Land, Antarctica. Polar Biology, 25, 771777.CrossRefGoogle Scholar
Skotnicki, M.L., Mackenzie, A.M., Ninham, J.A. & Selkirk, P.M. 2004. High levels of genetic variability in the moss Ceratodon purpureus from continental Antarctica, subantarctic Heard and Macquarie Islands, and Australasia. Polar Biology, 27, 687698.CrossRefGoogle Scholar
Skotnicki, M.L., Selkirk, P.M. & Beard, C. 1998. RAPD profiling of genetic diversity in two populations of the moss Ceratodon purpureus in Victoria Land, Antarctica. Polar Biology, 19, 172176.CrossRefGoogle Scholar
Smith, R.I.L 1991. Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana, 30, 313324.CrossRefGoogle Scholar
Smith, R.I.L. & Convey, P. 2002. Enhanced sexual reproduction in bryophytes at high latitudes in the maritime Antarctic. Journal of Bryology, 24, 107117.CrossRefGoogle Scholar
Stevens, M.I., Hunger, S.A., Hills, S.F.K. & Gemill, C.E.C. 2007. Phantom hitch-hikers mislead estimates of genetic variation in Antarctic mosses. Plant Systematics and Evolution, 263, 191201.CrossRefGoogle Scholar
Stoddart, J.A. & Taylor, J.F. 1988. Genotypic diversity: estimation and prediction in samples. Genetics, 118, 705711.CrossRefGoogle ScholarPubMed
van Zanten, B.O. 1978. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. Journal of the Hattori Botanical Laboratory, 44, 455482.Google Scholar
Wasley, J., Robinson, S.A., Lovelock, C.E. & Popp, M. 2006. Some like it wet - biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Biology, 33, 443455.CrossRefGoogle ScholarPubMed
Willis, B.L. & Ayre, D.J. 1985. Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia, 65, 516525.CrossRefGoogle ScholarPubMed