Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-18T20:03:02.314Z Has data issue: false hasContentIssue false

Extent of the Ross Orogen in Antarctica: new data from DSDP 270 and Iselin Bank

Published online by Cambridge University Press:  08 February 2011

N. Mortimer*
Affiliation:
GNS Science, Private Bag 1930, Dunedin, New Zealand
J.M. Palin
Affiliation:
Department of Geology, University of Otago, PO Box 56, Dunedin, New Zealand
W.J. Dunlap
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis MN 55455, USA
F. Hauff
Affiliation:
IFM-GEOMAR Leibniz Institute for Marine Sciences, Wischhofstrasse 1–3, D-24148 Kiel, Germany

Abstract

The Ross Sea is bordered by the Late Precambrian–Cambrian Ross–Delamerian Orogen of East Antarctica and the more Pacific-ward Ordovician–Silurian Lachlan–Tuhua–Robertson Bay–Swanson Orogen. A calcsilicate gneiss from Deep Sea Drilling Project 270 drill hole in the central Ross Sea, Antarctica, gives a U-Pb titanite age of 437 ± 6 Ma (2σ). This age of high-grade metamorphism is too young for typical Ross Orogen. Based on this age, and on lithology, we propose a provisional correlation with the Early Palaeozoic Lachlan–Tuhua–Robertson Bay–Swanson Orogen, and possibly the Bowers Terrane of northern Victoria Land. A metamorphosed porphyritic rhyolite dredged from the Iselin Bank, northern Ross Sea, gives a U-Pb zircon age of 545 ± 32 Ma (2σ). The U-Pb age, petrochemistry, Ar-Ar K-feldspar dating, and Sr and Nd isotopic ratios indicate a correlation with Late Proterozoic–Cambrian igneous protoliths of the Ross Orogen. If the Iselin Bank rhyolite is not ice-rafted debris, then it represents a further intriguing occurrence of Ross basement found outside the main Ross–Delamerian Orogen.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.J. 1986. Geochronological studies of the Swanson Formation of Marie Byrd Land, West Antarctica, and correlation with northern Victoria Land, East Antarctica and the South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 29, 345358.CrossRefGoogle Scholar
Adams, C.J. 2004. Rb-Sr age and strontium isotope characteristics of the Greenland Group, Buller Terrane, New Zealand, and correlations at the East Gondwanaland margin. New Zealand Journal of Geology and Geophysics, 47, 189200.CrossRefGoogle Scholar
Adams, C.J. 2006. Styles of uplift of Paleozoic terranes in northern Victoria Land, Antarctica: evidence from K–Ar patterns. In Fütterer, D.K., Danaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Heidelberg: Springer, 205214.CrossRefGoogle Scholar
Adams, C.J. 2007. Geochronology of Paleozoic terranes at the Pacific Ocean margin of Zealandia. Gondwana Research, 13, 250258.CrossRefGoogle Scholar
Allibone, A.H. Wysoczanski, R.J. 2002. Initiation of magmatism during the Cambro–Ordovician Ross orogeny in southern Victoria Land, Antarctica. Geological Society America Bulletin, 114, 10071018.2.0.CO;2>CrossRefGoogle Scholar
Allibone, A.H., Jongens, R., Turnbull, I.M., Milan, L.A., Daczko, N.R., De Paoli, M.C. Tulloch, A.J. 2010. Plutonic rocks of western Fiordland, New Zealand: field relations, geochemistry, correlation, and nomenclature. New Zealand Journal of Geology and Geophysics, 52, 379415.CrossRefGoogle Scholar
Bradshaw, J.D. 2007. The Ross Orogen and Lachlan Fold Belt in Marie Byrd Land, northern Victoria Land and New Zealand: implication for the tectonic setting of the Lachlan Fold Belt in Antarctica. In Cooper, A.K., Raymond, C.R., et al. eds. Antarctica: a keystone in a changing world - Online Proceedings of the 10th ISAES. USGS Open-File Report 2007-1047, Short Research Paper 059.Google Scholar
Bradshaw, J.D., Andrews, P.B. Field, B.D. 1983. Swanson Formation and related rocks of Marie Byrd Land and comparison with the Robertson Bay Group of north Victoria Land. In Oliver, R.L., James, P.R. & Jago, J.B., eds. Antarctic earth science. Canberra: Australian Academy of Science, 274279.Google Scholar
Bradshaw, J.D., Weaver, S.D. Laird, M.G. 1985. Suspect terranes and Cambrian tectonics in northern Victoria land, Antarctica. In Howell, D.G., ed. Tectonostratigraphic terranes of the circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources, Houston, Earth Science Series, 1, 467–479.Google Scholar
Bradshaw, J.D., Gutjahr, M., Weaver, S.D. Bassett, K.N. 2009. Cambrian intra-oceanic arc accretion to the austral Gondwana margin: constraints on the location of proto-New Zealand. Australian Journal of Earth Sciences, 56, 587594.CrossRefGoogle Scholar
Calvert, A.T. Mortimer, N. 2003. Thermal history of Transantarctic Mountains K-feldspars, southern Victoria Land. Terra Antartica, 10, 315.Google Scholar
Cawood, P.A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Science Reviews, 69, 249279.CrossRefGoogle Scholar
Challis, G.A., Gabites, J. Davey, F.J. 1982. Precambrian granite and manganese nodules dredged from southwestern Campbell Plateau, New Zealand. New Zealand Journal of Geology and Geophysics, 25, 493497.CrossRefGoogle Scholar
Compston, W., Williams, I.S. Meyer, C. 1984. U-Pb geochronology of zircons from lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89, 525534.Google Scholar
Cook, Y. Craw, D. 2002. Neoproterozoic structural slices in the Ross Orogen, Skelton Glacier area, South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 45, 133143.Google Scholar
Cooper, A.F., Maas, R., Scott, J.M. Barber, A.J.W. 2010. Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: implications for the Rodinia-Gondwana transition in southern Victoria Land, Antarctica. Geological Society of America Bulletin, 10.1130/B30237.1Google Scholar
Cottle, J.M. Cooper, A.F. 2006. Geology, geochemistry, and geochronology of an A-type granite in the Mulock Glacier area, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 49, 191202.CrossRefGoogle Scholar
Cox, S.C., Parkinson, D.L., Allibone, A.H. Cooper, A.F. 2000. Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 43, 501520.CrossRefGoogle Scholar
Dallmeyer, R.D. Wright, T.O. 1992. Diachronous cleavage development in the Robertson Bay Terrane, Northern Victoria Land, Antarctica: tectonic implications. Tectonics, 11, 437448.CrossRefGoogle Scholar
Fioretti, A.M., Black, L.P., Foden, J. Visona, D. 2005a. Grenville-age magmatism at the South Tasman Rise (Australia): a new piercing point for the reconstruction of Rodinia. Geology, 33, 769772.CrossRefGoogle Scholar
Fioretti, A.M., Capponi, G., Black, L.P., Varne, R. Visona, D. 2005b. Surgeon Island granite SHRIMP zircon ages: a clue for the Cambrian tectonic setting and evolution of the Paleopacific margin of Gondwana (northern Victoria Land, Antarctica). Terra Nova, 17, 242249.CrossRefGoogle Scholar
Fitzgerald, P.G. Baldwin, S. 1997. Detachment fault model for evolution of the Ross Embayment. In Ricci, C.A., ed. The Antarctic region: processes and evolution. Siena: Terra Antartica Publications, 555564.Google Scholar
Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M., Horstwood, M.S.A. Fanning, C.M. 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology, 151, 751768.CrossRefGoogle Scholar
Ford, A.B. Barrett, P.J. 1975. Basement rocks of the south-central Ross Sea, Site 270. In Hayes, D.E., ed. Initial Reports, Deep Sea Drilling Project 28. Washington, DC: US Government Printing Office, 861868.Google Scholar
Garbe-Schönberg, C.D. 1993. Simultaneous determination of thirty-seven trace elements in twenty eight rocks standards by ICP-MS. Geostandards Newsletter, 17, 151178.Google Scholar
Ghiribelli, B., Frezzotti, M.L. Palmeri, R. 2002. Coesite in eclogites of the Lanterman Range (Antarctica): evidence form textural and Raman studies. European Journal of Mineralogy, 14, 355360.CrossRefGoogle Scholar
Gibson, G.M. Ireland, T.R. 1996. Extension of Delamerian (Ross) orogen into western New Zealand: evidence from zircon ages and implications for crustal growth along the Pacific margin of Gondwana. Geology, 24, 10871090.2.3.CO;2>CrossRefGoogle Scholar
Glen, R.A. 2005. The Tasmanides of eastern Australia. In Vaughan, A.P.M., Leat, P.L. & pankhurst, R.J., eds. Terrane processes at the margins of Gondwana. Geological Society, London, Special Publication, 246, 23–96.Google Scholar
Goodge, J.W. 2002. From Rodinia to Gondwana: supercontinent evolution in the Transantarctic Mountains. In Gamble, J. & Skinner, D.N.B., eds. Proceedings of the 8th International Symposium on Antarctic Earth Science. Royal Society of New Zealand Bulletin, 35, 61–74.Google Scholar
Hoernle, K., Hauff, F. van den Bogaard, P. 2004. 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology, 32, 697700.CrossRefGoogle Scholar
Kennedy, P.C., Roser, B.P. Hunt, J.L. 1983. Analyses of the USGS geochemical reference samples GXR-1 to 6. Geostandards Newsletter, 7.CrossRefGoogle Scholar
Laird, M.G. 1991. The Late Proterozoic-Middle Palaeozoic rocks of Antarctica. In Tingey, R.J., ed. The geology of Antarctica. Oxford: Oxford University Press, 74119.Google Scholar
Licht, K.J., Lederer, J.R. Swope, J.R. 2005. Provenance of LGM glacial till (sand fraction) across the Ross Embayment, Antarctica. Quaternary Science Reviews, 24, 14991520.Google Scholar
McLaren, S.M., Dunlap, W.J., Sandiford, M. McDougall, I. 2002. Thermochronology of high heat-producing crust at Mount Painter, South Australia: implications for tectonic reactivation of continental interiors. Tectonics, 21, 118.CrossRefGoogle Scholar
Morand, V.J. 1990. Low-pressure regional metamorphism in the Omeo Metamorphic Complex, Victoria, Australia. Journal of Metamorphic Geology, 8, 112.CrossRefGoogle Scholar
Morand, V.J. 1994. Geological note: calc-silicate lenses in the early Palaeozoic mud-pile of the Lachlan fold belt. Australian Journal of Earth Sciences, 41, 383386.Google Scholar
Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. Ireland, T.R. 1998. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal Geophysical Research, 103, 25292547.CrossRefGoogle Scholar
Scott, J.M. Palin, J.M. 2008. LA-ICP-MS U-Pb zircon ages from Mesozoic plutonic rocks in eastern Fiordland, New Zealand. New Zealand Journal Geology and Geophysics, 51, 105113.CrossRefGoogle Scholar
Scott, J.M., Cooper, A.F., Palin, J.M., Tulloch, A.J., Kula, J., Jongens, R.J., Spell, T.L. Pearson, N.J. 2009. Tracking the influence of a continental margin on growth of a magmatic arc, Fiordland, New Zealand, using thermobarometry, thermochronology, and zircon U-Pb and Hf isotopes. Tectonics, 28, 10.1029/2009TC002489.Google Scholar
Stump, E. 1995. The Ross Orogen of the Transantarctic Mountains. Cambridge: Cambridge University Press, 284 pp.Google Scholar
Wade, F.A. Couch, D.R. 1982. The Swanson Formation, Ford Ranges, Marie Byrd Land - evidence for and against a direct relationship with the Robertson Bay group, northern Victoria Land. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 609616.Google Scholar
Wareham, C.D., Stump, E., Storey, B.C., Millar, I.L. Riley, T.R. 2001. Petrogenesis of the Cambrian Liv Group, a bimodal volcanic rock suite from the Ross orogen, Transantarctic Mountains. Geological Society of America Bulletin, 113, 360372.2.0.CO;2>CrossRefGoogle Scholar
Whalen, J.B., Currie, K.L. Chappell, B.W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407419.CrossRefGoogle Scholar
Wong, F.L., Barrett, P.J., Gamble, J.A. Howell, D.G. 1987. Petrography of rock samples dredged from the Iselin Bank, Ross Sea, Antarctica. In Cooper, A.K. & Davey, F.J., eds. The Antarctic continental margin: geology and geophysics of the western Ross Sea. Houston, TX: Circum-Pacific Council for Energy and Mineral Resources, 231253.Google Scholar
Wysoczanski, R.J. Allibone, A.H. 2004. Age, correlation, and provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville age detritus on the margin of East Antarctica. Journal of Geology, 112, 401416.CrossRefGoogle Scholar