Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T06:12:29.642Z Has data issue: false hasContentIssue false

Evolution and biogeography of Lyallia and Hectorella (Portulacaceae), geographically isolated sisters from the Southern Hemisphere

Published online by Cambridge University Press:  16 August 2007

Steven J. Wagstaff*
Affiliation:
Allan Herbarium, Landcare Research, PO Box 40, Lincoln 7640, New Zealand
Françoise Hennion
Affiliation:
UMR Ecobio, Université de Rennes 1, CNRS, Av du Général Leclerc, F-35042 Rennes, France
*
*Corresponding author:[email protected]

Abstract

The Southern Hemisphere contains many monotypic taxa, for which phylogenetic relationships are important to illuminate biogeographical history. The monotypic genus Lyallia is endemic to the sub-Antarctic Iles Kerguelen. A close relationship with another monotypic taxon, the New Zealand endemic Hectorella, was proposed. They share a dense cushion growth habit with small coriaceous leaves that lack stipules. The solitary flowers are bicarpellate with two sepals, 4–5 petals, 3–5 stamens and a bifid style. The fruit is an indehiscent capsule with 1–5 seeds. The flowers of Lyallia kerguelensis are hermaphroditic with four petals and three stamens whereas the flowers of Hectorella caespitosa are female, male or hermaphroditic, with five petals and five stamens. Lyallia kerguelensis is rare on Kerguelen, whereas Hectorella caespitosa is confined to the South Island of New Zealand. Our phylogenetic analysis of trnK/matK intergenic spacer and rbcL sequences provides evidence supporting a close relationship between Lyallia and Hectorella. The two species form a well-supported clade that is nested within the Portulacaceae. Divergence estimates suggest they shared a common ancestor during the late Tertiary long after the fragmentation of Gondwana. Such relationships underscore the importance of transoceanic dispersal and extinctions for plant evolution in the Southern Hemisphere.

Type
BIOLOGICAL SCIENCES
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applequist, W.L., Warren, W.L., Zimmer, E.A. & Nepokroeff, M. 2006. Molecular evidence resolving the systematic position of Hectorella (Portulacaeae). Systematic Botany, 31, 310319.CrossRefGoogle Scholar
Ashworth, A.C. & Cantrill, D.J. 2004. Neogene vegetation of the Meyer Desert formation (Sirius Group) Transantarctic Mountains, Antarctica. Paleaogeography, Palaeoclimatology, Palaeoecology, 213, 6582.CrossRefGoogle Scholar
Bargelloni, L., Zane, L., Derome, N., Lecointre, G. & Patarnello, T. 2000. Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarctic Science, 12, 259268.CrossRefGoogle Scholar
Behnke, H.-D. 1975. Hectorella caespitosa: ultrastructural evidence against its inclusion into Caryophyllaceae. Plant Systematics and Evolution, 124, 3134.CrossRefGoogle Scholar
Bentham, G. 1862. Notes on Caryophylleae, Portulaceae, and some allied orders. Journal of the Proceedings of the Linnean Society: Botany, 6, 5577.Google Scholar
Bergstrom, D.M. & Chown, S.L. 1999. Life at the front: history, ecology and change on southern ocean islands. Trends in Ecology and Evolution, 14, 472477.Google ScholarPubMed
Beuzenberg, E.J. & Hair, J.B. 1983. Contributions to a chromosome atlas of the New Zealand flora - 25. Miscellaneous species. New Zealand Journal of Botany, 21, 1320.Google Scholar
Billings, W.W. & Mark, A.F. 1961. Interactions between alpine tundra vegetation and patterned ground in the mountains of southern New Zealand. Ecology, 42, 1831.CrossRefGoogle Scholar
Carlquist, S. 1997 [Publ. 1998]. Wood anatomy of Portulacaceae and Hectorellaceae: ecological, habital, and systematic implications. Aliso, 16, 137153.CrossRefGoogle Scholar
Chapuis, J.L., Frenot, Y. & Lebouvier, M. 2004. Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen islands and influence of climate change. Biological Conservation, 117, 167179.CrossRefGoogle Scholar
Chown, S.L., Gremmen, N.J.M. & Gaston, K.J. 1998. Ecological biogeography of southern ocean islands: Species–area relationships, human impacts, and conservation. American Naturalist, 152, 562575.CrossRefGoogle ScholarPubMed
Clement, J.S. & Mabry, T.J. 1996. Pigment evolution in the Caryophyllales: a systematic overview. Botanica Acta, 109, 360367.CrossRefGoogle Scholar
Cranwell, L.M. 1963. The Hectorellaceae: pollen type and taxonomic speculation. Grana palynologica, 4, 195202.CrossRefGoogle Scholar
Diels, L. 1897. Vegetations-Biologie von Neu-Seeland. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 22, 201300.Google Scholar
Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 1115.Google Scholar
Edwards, E.J., Nyffeler, R. & Donoghue, M.J. 2005. Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. American Journal of Botany, 92, 11771188.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783791.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521565.CrossRefGoogle ScholarPubMed
Frenot, Y., Gloaguen, J.C., Cannavacciuolo, M. & Bellido, A. 1998. Primary successions on glacier forelands in the subantarctic Kerguelen Islands. Journal of Vegetation Science, 9, 7584.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.C., Massé, L. & Lebouvier, M. 2001. Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam islands. Biological Conservation, 101, 3350.CrossRefGoogle Scholar
Gray, A. 1876. Botany. In Kidder, J.H., ed. Contributions to the natural history of Kerguelen Island, made in connection with the United States Transit of Venus Expedition 1874–75. Vol. 2, Bulletin of the U.S. National Museum, 1(3), 2030.Google Scholar
Heads, M. 2005. Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics, 21, 6278.CrossRefGoogle ScholarPubMed
Hennion, F. 1992. Etude des caractéristiques biologiques et génétiques de la flore endémique des îles Kerguelen. PhD thesis, Muséum National d'Histoire Naturelle, Paris, 264 pp. [Unpublished.]Google Scholar
Hennion, F. & Walton, D.W.H. 1997a. Ecology and seed morphology of endemic species from Kerguelen phytogeographic zone. Polar Biology, 18, 229235.CrossRefGoogle Scholar
Hennion, F. & Walton, D.W.H. 1997b. Seed germination of endemic species from Kerguelen phytogeographic zone. Polar Biology, 17, 180187.CrossRefGoogle Scholar
Hill, R.S. & Wang, S.S. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany, 9, 867875.CrossRefGoogle Scholar
Hill, R.S., Macphail, M.K. & Jordan, G.J. 2001. Macrofossils associated with the fossil fern spore Cyatheacidites annulatus and their significance for Southern hemisphere biogeography. Review of Paleobotany and Palynology, 116, 195202.CrossRefGoogle Scholar
Hooker, J.D. 1847. The botany of the Antarctic voyage of H. M. S. Discovery Ships Erebus and Terror, in the years 1839–1843, Vol. 1, Flora Antarctica, Part 2. London: Reeve, 548549.Google Scholar
Hooker, J.D. 1864. Handbook of the New Zealand Flora, Vol. 1. London: Reeve, 27.Google Scholar
Kadereit, G., Borsch, T., Weising, K. & Freitag, H. 2003. Phylogeny of the Amaranthaceae and Chenopodiaceae and the evolution of C-4 photosynthesis. International Journal of Plant Sciences, 164, 959986.CrossRefGoogle Scholar
Lavin, M., Herendeen, P.S. & Wojciechowski, M.F. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54, 575594.CrossRefGoogle ScholarPubMed
Le Roux, P.C., McGeoch, M.A., Nyakatya, M.J. & Chown, S.L. 2005. Effect of a short-term climate change experiment on a sub-Antarctic keystone plant species. Climate Change Biology, 11, 16281639.Google Scholar
Lourteig, A. & Cour, P. 1963. Essai sur la distribution géographique des plantes vasculaires de l'archipel de Kerguelen. Comité National Français pour les Recherches Antarctiques, Biologie, 3, 6370, 11 cartes.Google Scholar
Mabry, T.J., Neuman, P. & Philipson, W.R. 1978. Hectorella: a member of the betalain-suborder Chenopodiineae of the order Centrospermae. Plant Systematics and Evolution, 130, 163165.CrossRefGoogle Scholar
McLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271300.CrossRefGoogle Scholar
Meimberg, H., Dittrich, P., Bringman, G., Schlauer, J. & Heubl, G. 2000. Molecular phylogeny of Caryophyllales s.l. based on matK sequences with special emphasis on carnivorous taxa. Plant Biology, 2, 218228.CrossRefGoogle Scholar
Mohr, B.A.R., Wähnert, V. & Lazarus, D. 2002. Mid-Cretaceous paleobotany and palynology of the central Kerguelen Plateau, southern Indian Ocean (ODP Leg 183, Site 1138). Proceedings of the Ocean Drilling Program, Scientific Results, 183, 139 [Online].Google Scholar
Müller, K. & Borsch, T. 2005. Phylogenetics of Amaranthaceae based on matK/trnK sequence data - evidence from parsimony, likelihood, and Baysian analyses. Annals of the Missouri Botanical Garden, 92, 66102.Google Scholar
Nicolaysen, K., Frey, F.A., Hodges, K.V., Weis, D. & Giret, A. 2000. 40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for Cenozoic eruption rates of the Kerguelen plume. Earth and Planetary Science Letters, 174, 313328.CrossRefGoogle Scholar
Newstrom, L. & Robertson, A. 2005. Progress in understanding pollination systems in New Zealand. New Zealand Journal of Botany, 43, 159.CrossRefGoogle Scholar
Nyffeler, R. 2002. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK sequences and trnL/trnF sequences. American Journal of Botany, 89, 312326.CrossRefGoogle ScholarPubMed
O'Quinn, R. & Hufford, L. 2005. Molecular systematics of Montieae (Portulaceae): implications for taxonomy, biogeography, and ecology. Systematic Botany 30, 314331.CrossRefGoogle Scholar
Pax, F. 1889a. Caryophyllaceae. In Engler, A. & Prantl, K., eds. Die natürlichen Pflanzenfamilien, 1st ed., Vol. Iii/1b. Leipzig: W. Engelmann, 6194.Google Scholar
Pax, F. 1889b. Portulacaceae. In Engler, A. & Prantl, K., eds. Die natürlichen Pflanzenfamilien, 1st ed., Vol. Iii/1b. Leipzig: W. Engelmann, 5160.Google Scholar
Pax, F. & Hoffmann, K. 1934. Caryophyllaceae. In Engler, A. & Prantl, K., eds. Die natürlichen Pflanzenfamilien, 2 ed., Vol. 16c. Leipzig: W. Engelmann, 275364.Google Scholar
Philippe, M., Giret, A. & Jordan, G. J. 1998. Bois fossiles tertiaires et quaternaires de Kerguelen (océan Indien austral). Comptes rendus de l'Académie des Sciences de Paris, Sciences de la terre et des planètes, 326, 901906.Google Scholar
Philipson, W.R. 1993. Hectorellaceae. In Kubitzki, K., Rohwer, J.G. & Bittrich, V., eds. The families and genera of vascular plants, Vol. 2. Berlin: Springer, 331334.Google Scholar
Philipson, W.R. & Skipworth, J.P. 1961. Hectorellaceae: a new family of dicotyledons. Transactions of the Royal Society of New Zealand: Botany, 1, 31.Google Scholar
Posada, D. & Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817818.CrossRefGoogle ScholarPubMed
Primack, R.B. 1978. Variability in New Zealand montane and alpine pollinator assemblages. New Zealand Journal of Ecology, 1, 6673.Google Scholar
Raven, P.H. 1972. Plant species disjunctions: a summary. Annals of the Missouri Botanical Garden, 59, 234246.CrossRefGoogle Scholar
Rettig, J.H., Wilson, H.D. & Manhart, J.R. 1991. Phylogeny of the Caryophyllales - gene sequence data. Taxon, 41, 210–209.Google Scholar
Sanderson, M.J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution, 14, 12181231.CrossRefGoogle Scholar
Sanderson, M.J., Thorne, J.L., Wikstöm, N. & Bremer, K. 2004. Molecular evidence on plant divergence times. American Journal of Botany, 91, 16561665.CrossRefGoogle ScholarPubMed
Sanmartin, I. & Ronquist, F. 2004. Southern Hemisphere biogeography inferred by envent-based models: plant versus animal patterns. Systematic Biology, 53, 216243.CrossRefGoogle ScholarPubMed
Schermann-Legionnet, A., Hennion, F., Vernon, P. & Atlan, A. 2007. Breeding system of the subantarctic plant species Pringlea antiscorbutica R. Br. and search for potential insect pollinators in the Kerguelen Islands. Polar Biology, 30, 11831193.CrossRefGoogle Scholar
Skipworth, J.P. 1961. The taxonomic position of Hectorella caespitosa Hook.f. Transactions of the Royal Society of New Zealand, 1, 1730.Google Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10. Sunderland: Sinauer Associates.Google Scholar
Swenson, U., Backlund, A., McLoughlin, S. & Hill, R.S. 2001. Nothofagus biogeography revisited with special emphasis on the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics, 17, 2847.CrossRefGoogle Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. 1997. The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 48764882.CrossRefGoogle Scholar
Wagstaff, S J. & Wege, J. 2002. Patterns of diversification in New Zealand Stylidiaceae. American Journal of Botany, 89, 865874.CrossRefGoogle ScholarPubMed
Wagstaff, S.J., Martinsson, K. & Swenson, U. 2000. Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachondraceae) and their implications for austral biogeography. New Zealand Journal of Botany, 38, 587596.CrossRefGoogle Scholar
Wagstaff, S.J., Breitwieser, I. & Swenson, U. 2006. Origin and relationships of the austral genus Abrotanella (Asteraceae) inferred from DNA sequences. Taxon, 55, 95106.Google Scholar
Wardle, P., Ezcurra, C., Ramirez, C. & Wagstaff, S.J. 2001. Comparison of the flora and vegetation of the southern Andes and New Zealand. New Zealand Journal of Botany, 39, 69108.CrossRefGoogle Scholar
Winkworth, R.C., Wagstaff, S.J., Glenny, D. & Lockhart, P.J. 2002. Plant dispersal N.E.W.S from New Zealand. Trends in Ecology and Evolution, 17, 514520.CrossRefGoogle Scholar