Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T08:46:38.638Z Has data issue: false hasContentIssue false

The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project

Published online by Cambridge University Press:  02 December 2010

Clive Howard-Williams*
Affiliation:
NIWA, PO Box 8602, Christchurch, New Zealand
Ian Hawes
Affiliation:
Aquatic Research Solutions Ltd, 35 Queen St., Cambridge, New Zealand
Shulamit Gordon
Affiliation:
Antarctica New Zealand, Private Bag 4745, Christchurch, New Zealand

Abstract

After a decade of research, New Zealand’s Latitudinal Gradient Project (LGP) now includes primary sites from Cape Hallett (72°S) to the Darwin Glacier (80°S), while additional observations extend the latitudinal transect from 84°S to sub-Antarctic regions. The LGP has been structured around a hypothesis that, in a frigid continent, ice dynamics is the key ecosystem variable. For terrestrial environments, two aspects of ice dynamics appear to underlie much of the observed variability. Firstly, the aridity of the region makes the transition from ice to water a key ecological factor, and secondly, the legacy of ice dynamics dating as far back as the Pliocene is imprinted on biogeography. These factors operate at difference temporal and spatial scales and neither is monotonically related to latitude. Both are also complicated by meso-scale cross gradients of altitude and distance from the sea and micro-scale local variability. Whilst climate does vary on a broad-scale, differences within the northern and central parts of Victoria Land that the LGP has so far examined are insufficient to impose any overarching effect that can overwhelm these more local effects. The result is a multiple-scale patchwork of habitats and communities, more or less replicated across the transect, in which variability at any given latitude generally exceeds variability between latitudes. A lesser quantum of research has been directed at marine ecosystems, but here there is a similar picture of local variability dominating within the Ross Sea, with significant latitude-scale effects only emerging when transects are extended into maritime- and sub-Antarctic regions. It is implicit, but not specifically recognized in the LGP context, that a further confounding effect on the interpretation of ‘transect’ information is the multiple stressor concept that requires a simultaneous analysis of interacting (synergistic or antagonistic) factors and environmental responses. As the LGP continues to extend further south, climate is expected to become more extreme, and water availability may change sufficiently for loss of habitat and species diversity to occur. Here we discuss options for refining the LGP approach to optimize its potential for understanding variability, and the factors underpinning this, in the Ross Sea Sector.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O’Donnell, A., Russell, N., Seppelt, R.D. Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 30033018.CrossRefGoogle Scholar
Arblaster, J. Meehl, G. 2006. Contributions of external forcings to Southern Annular Mode trends. Journal of Climate, 19, 28962905.CrossRefGoogle Scholar
Barrett, J.E., Virginia, R.A., Wall, D.H., Cary, S.C., Adams, B.J., Hacker, A.L. Aislabie, J.M. 2006. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science, 18, 535548.CrossRefGoogle Scholar
Barrett, J.E., Virginia, R.A., Wall, D.H., Doran, P.T., Fountain, A.G., Welch, K.A. Lyons, W.B. 2008. Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biology, 14, 22492261.CrossRefGoogle Scholar
Bertler, N.A.N., Naish, T.R., Oerter, H., Kipfstuhl, S., Barrett, P.J., Mayewski, P.A. Kreutz, K. 2006. The effects of joint ENSO–Antarctic Oscillation forcing on the McMurdo Dry Valleys, Antarctica. Antarctic Science, 18, 507514.CrossRefGoogle Scholar
Brabyn, L., Beard, C.D., Seppelt, R.D., Rudolph, E.D., Türk, R. Green, T.G.A. 2006. Quantified vegetation change over 42 years at Cape Hallett, East Antarctica. Antarctic Science, 18, 561572.CrossRefGoogle Scholar
Cannone, N. 2006. A network for monitoring terrestrial ecosystems along a latitudinal gradient in continental Antarctica. Antarctic Science, 18, 549560.CrossRefGoogle Scholar
Cannone, N. Guglielmin, M. 2010. Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. Antarctic Science, 21, 10.1017/S0954102010000751.Google Scholar
Caruso, T., Hogg, I.D. Bargagli, R. 2010. Identifying appropriate sampling and modelling approaches for analysing distributional patterns of Antarctic terrestrial arthropods along the Victoria Land latitudinal gradient. Antarctic Science, 21, 10.1017/S095410201000043X.Google Scholar
Clark, M.R., Dunn, M.R., McMillan, P.J., Pinkerton, M.H., Stewart, A. Hanchet, S.M. 2010. Latitudinal variation of demersal fish assemblages in the western Ross Sea. Antarctic Science, 21, 10.1017/S0954102010000441.Google Scholar
Cowan, D., Khan, N., Pointing, S. Cary, C. 2010. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 21, 10.1017/S0954102010000507.Google Scholar
Cummings, V.J., Thrush, S.F., Chiantore, M., Hewitt, J.E. Cattaneo-Vietti, R. 2010. Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude? Antarctic Science, 21, 10.1017/S0954102010000489.Google Scholar
Cummings, V.J., Thrush, S., Norkko, A., Andrew, N., Hewitt, J., Funnell, G. Schwarz, A.-M. 2006. Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarctic Science, 18, 633644.CrossRefGoogle Scholar
De Domenico, F., Chiantore, M., Buongiovanni, S., Paola, M., Ferranti, P., Ghione, S., Thrush, S., Cummings, V., Hewitt, J., Kroeger, K. Cattaneo-Vietti, R. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land coast, Ross Sea, Antarctica. Antarctic Science, 18, 655662.CrossRefGoogle Scholar
Demetras, N.J., Hogg, I.D., Banks, J.C. Adams, B.J. 2010. Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: Prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarctic Science, 21, 10.1017/S0954102010000659.Google Scholar
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. Lyons, W.B. 2002a. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research - Atmospheres, 107, D24.CrossRefGoogle Scholar
Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P. Parsons, A.N. 2002b. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Ghigliotti, L., Near, T.J., Ferrando, S., Vacchi, M. Pisano, E. 2010. Cytogenetic diversity in the Antarctic plunderfishes (Notothenioidei: Artedidraconidae). Antarctic Science, 21, 10.1017/S0954102010000660.Google Scholar
Guidetti, M., Marcato, S., Chiantore, M., Patarnello, T., Albertelli, G. Cattaneo-Vietti, R. 2006. Exchange between populations of Adamussium colbecki (Mollusca: Bivalvia) in the Ross Sea. Antarctic Science, 18, 645653.Google Scholar
Hawes, T.C., Torricelli, G. Stevens, M.I. 2010. Haplotype diversity in the Antarctic springtail Gressittacantha terranova at fine spatial scales - a Holocene twist to a Pliocene tale. Antarctic Science, 21, 10.1017/S0954102010000490.Google Scholar
Healy, M., Webster-Brown, J.G., Brown, K.L. Lane, V. 2006. Chemistry and stratification of Antarctic meltwater ponds II: inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525533.Google Scholar
Hills, S.F.K., Stevens, M.I. Gemmill, C.E.C. 2010. Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum. Antarctic Science, 21, 10.1017/S0954102010000453.Google Scholar
Hofstee, E.H., Balks, M.R., Petchey, F. Campbell, D.I. 2006a. Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarctic Science, 18, 473486.CrossRefGoogle Scholar
Hofstee, E.H., Campbell, D.I., Balks, M.R. Aislabie, J. 2006b. Groundwater characteristics at Seabee Hook, Cape Hallett, Antarctica. Antarctic Science, 18, 487495.CrossRefGoogle Scholar
Howard-Williams, C., Peterson, D., Lyons, W.B., Cattaneo-Vietti, R. Gordon, S. 2006. Measuring ecosystem response in a rapidly changing environment: the Latitudinal Gradient Project. Antarctic Science, 18, 465471.CrossRefGoogle Scholar
Morley, S.A., Griffiths, H.J., Barnes, D.K.A. Peck, L.S. 2010. South Georgia: a key location for linking physiological capacity to distributional changes in response to climate change. Antarctic Science, 21, 10.1017/S0954102010000465.Google Scholar
Mothershill, C., Mosse, I. Seymour, C. 2007. Multiple stressors: a challenge for the future. Dordrecht: Springer, 484 pp.CrossRefGoogle Scholar
Novis, P.M. Smissen, R.D. 2006. Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarctic Science, 18, 573581.CrossRefGoogle Scholar
Povero, P., Castellano, M., Ruggieri, N., Monticelli, L.S., Saggiomo, V., Chiantore, M., Guidetti, M. Cattaneo-Vietti, R. 2006. Water column features and their relationship with sediments and benthic communities along the Victoria Land coast, Ross Sea, summer 2004. Antarctic Science, 18, 603613.CrossRefGoogle Scholar
Ruprecht, U., Lumbsch, H.T., Brunauer, G., Green, T.G.A. Turk, R. 2010. Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science, 21, 10.1017/S0954102010000477.Google Scholar
Ryan, K.G., Hegseth, E.N., Martin, A., Davy, S.K., O’Toole, R., Ralph, P.J., McMinn, A. Thorn, C.J. 2006. Comparison of the microalgal community within fast ice at two sites along the Ross Sea coast, Antarctica. Antarctic Science, 18, 583594.CrossRefGoogle Scholar
Schiaparelli, S., Lörz, A.-N. Cattaneo-Vietti, R. 2006. Diversity and distribution of mollusc assemblages on the Victoria Land coast and the Balleny Islands, Ross Sea, Antarctica. Antarctic Science, 18, 615631.CrossRefGoogle Scholar
Schroeter, B., Green, T.G.A., Pannewitz, S., Schlensog, M. Sancho, L.G. 2010. Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarctic Science, 21, 10.1017/S0954102010000647.Google Scholar
Seppelt, R.D., Türk, R., Green, T.G.A., Moser, G., Pannewitz, S., Sancho, L.G. Schroeter, B. 2010. Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarctic Science, 21, 10.1017/S0954102010000568.Google Scholar
Sewell, M.A. 2006. The meroplankton community of the northern Ross Sea: a preliminary comparison with the McMurdo Sound region. Antarctic Science, 18, 595602.CrossRefGoogle Scholar
Seybold, C.A., Balks, M.R. Harms, D.S. 2010. Characterization of active layer water contents in the McMurdo Sound Region, Antarctica. Antarctic Science, 21, 10.1017/S0954102010000696.Google Scholar
Smith, J.L., Barrett, J.E., Tusnady, G., Rejto, L. Cary, S.C. 2010. Resolving environmental drivers of microbial community structure in Antarctic soils. Antarctic Science, 21, 10.1017/S0954102010000763.Google Scholar
Storey, B.C., Fink, D., Hood, D., Joy, K., Shulmeister, J., Riger-Kusk, M. Stevens, M.I. 2010. Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarctic Science, 21, 10.1017/S0954102010000799.Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459463.CrossRefGoogle ScholarPubMed
Thrush, S., Dayton, P., Cattaneo-Vietti, R., Chiantore, M., Cummings, V., Andrew, N., Hawes, I., Kim, S., Kvitek, R. Schwarz, A.-M. 2006. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Research II, 53, 959971.Google Scholar
Torricelli, G., Frati, F., Convey, P., Telford, M. Carapelli, C. 2010. Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarctic Science, 21, 10.1017/S0954102010000775.Google Scholar
Vinebrook, R.D., Cottingham, K.L., Norberg, J., Sheffer, M., Dodson, S.I., Maberley, S.C. Sommer, U. 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104, 451457.CrossRefGoogle Scholar
Wait, B.R., Webster-Brown, J.G., Brown, K.L., Healy, M. Hawes, I. 2006. Chemistry and stratification of Antarctic meltwater ponds I: Coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarctic Science, 18, 515524.CrossRefGoogle Scholar
Webster-Brown, J., Gall, M., Gibson, J., Wood, S. Hawes, I. 2010. The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science, 21, 10.1017/S0954102010000787.Google Scholar
Welch, K.A., Lyons, B.W., Whisner, C., Gardner, C.B., Gooseff, M., McKnight, D.M. Priscu, J.C. 2010. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarctic Science, 21, 10.1017/S0954102010000702.Google Scholar
Witherow, R.A., Lyons, W.B., Bertler, N.A.N., Welch, K.A., Mayewski, P.A., Sneed, S.B., Nylen, T., Handley, M.J. Fountain, A. 2006. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. Antarctic Science, 18, 497505.CrossRefGoogle Scholar
Zawar-Reza, P., George, S., Storey, B. Lawson, W. 2010. Summertime boundary layer winds over the Darwin–Hatherton glacial system, Antarctica: observed features and numerical analysis. Antarctic Science, 21, 10.1017/S0954102010000817.Google Scholar