Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T18:42:55.810Z Has data issue: false hasContentIssue false

The effects of snow and salt on ice table stability in University Valley, Antarctica

Published online by Cambridge University Press:  13 October 2017

K.E. Williams*
Affiliation:
Montana State University, Department of Earth Sciences, Bozeman, MT 59717, USA US Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, USA
J.L. Heldmann
Affiliation:
NASA Ames Research Center, Division of Space Sciences and Astrobiology, Moffett Field, CA 94035, USA
Christopher P. McKay
Affiliation:
NASA Ames Research Center, Division of Space Sciences and Astrobiology, Moffett Field, CA 94035, USA
Michael T. Mellon
Affiliation:
Johns Hopkins University Applied Physics Laboratory, Planetary Exploration Group, Laurel, MD 20723, USA

Abstract

The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits and ii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockheim, J.G. 1982. Properties of a chronosequence of ultraxerous soils in the Transantarctic Mountains. Geoderma, 28, 239255.Google Scholar
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217227.Google Scholar
Bonan, G. 1996. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR technical note NCAR/TN-417+STR. Available at: http://opensky.ucar.edu/islandora/object/technotes:185.Google Scholar
Campbell, G.S. & Norman, J.M. 1998. An introduction to environmental biophysics. New York, NY: Springer, 286 pp.Google Scholar
Campbell, I.B. & Claridge, G.G.C. 2006. Permafrost properties, patterns and processes in the transantarctic mountain region. Permafrost and Periglacial Processes, 17, 215232.Google Scholar
Campbell, I.B., Claridge, G.G.C., Campbell, D.I. & Balks, M.R. 1998. The soil environment of the McMurdo Dry Valleys, Antarctica, in eco-system dynamics in a polar desert: the McMurdo Dry Valleys. Antarctic Research Series, 72, 297322.Google Scholar
Cardarelli, F. 2008. Materials handbook: a concise desktop reference. Dordrecht: Springer, 1339 pp.Google Scholar
Chamberlain, M.A. & Boynton, W.V. 2007. Response of Martian ground ice to orbit-induced climate change. Journal of Geophysical Research - Planets, 112, 10.1029/2006JE002801.CrossRefGoogle Scholar
Claridge, G.G.C. & Campbell, I.B. 1977. Salts in the Antarctic soils, their distribution and relationship to soil processes. Soil Science, 123, 377384.CrossRefGoogle Scholar
Farmer, G.T. & Cook, J. 2013. Climate change science: a modern synthesis. Volume 1 – The physical climate. Dordrecht: Springer, 564 pp.Google Scholar
Fisher, D.A., Lacelle, D., Pollard, W., Davila, A. & McKay, C.P. 2016. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica. Journal of Geophysical Research - Earth Surface, 121, 10.1002/2016JF004054.CrossRefGoogle Scholar
Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., McKay, C.P., Sletten, R.S., Rivkina, E.M., Vishnivetskaya, T.A., Erokhina, L.G., Ivanushkina, N.E., Kochkina, G.A., Shcherbakova, V.A., Soina, V.S., Spirina, E.V., Vorobyova, E.A., Fyodorov-Davydov, D.G., Hallet, B., Ozerskaya, S.M., Sorokovikov, V.A., Laurinavichyus, K.S., Shatilovich, A.V., Chanton, J.P., Ostroumov, V.E. & Tiedje, J.M. 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology, 7, 275311.Google Scholar
Hagedorn, B., Sletten, R.S. & Hallet, B. 2007. Sublimation and ice condensation in hyperarid soils: modeling the results using field data from Victoria Valley, Antarctica. Journal of Geophysical Research - Earth Surface, 112, 10.1029/2006JF000580.CrossRefGoogle Scholar
Hall, W.D. & Pruppacher, H.R. 1976. Survival of ice particles falling from cirrus clouds in subsaturated air. Journal of Atmospheric Sciences, 33, 19952006.Google Scholar
Hindmarsh, R.C.A., van der Wateren, F.M. & Verbers, A.L.L.M. 1998. Sublimation of ice through sediment in Beacon Valley, Antarctica. Geografiska Annaler - Physical Geography, 80A, 209219.Google Scholar
Jacobson, M.Z. 1998. Fundamentals of atmospheric modelling. Cambridge: Cambridge University Press, 672 pp.Google Scholar
Jordan, R.E., Albert, M.R. & Brun, E. 2008. Physical processes within the snow cover and their parameterization. In Armstrong, R.L. & Brun, E., ed. Snow and climate: physical processes, surface energy exchange and modeling. Cambridge: Cambridge University Press, 256 pp.Google Scholar
Jordan, R.E., Andreas, E.L. & Makshtas, A.P. 1999. Heat budget of snow-covered sea ice at North Pole 4. Journal of Geophysical Research - Oceans, 104, 77857806.Google Scholar
Kounaves, S.P., Stroble, S.T., Anderson, R.M., Moore, Q., Catling, D.C., Douglas, S., McKay, C.P., Ming, D.W., Smith, P.H., Tamppari, L.K. & Zent, A.P. 2010. Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environmental Science & Technology, 44, 10.1021/es9033606.Google Scholar
Kowalewski, D.E., Marchant, D.R., Head, J.W. & Jackson, D.W. 2012. A 2D model for characterizing first-order variability in sublimation of buried glacier ice, Antarctica: assessing the influence of polygon troughs, desert pavements and shallow-subsurface salts. Permafrost and Periglacial Processes, 23, 10.1002/ppp.731.Google Scholar
Kowalewski, D.E., Marchant, D.R., Levy, J.S. & Head, J.W. 2006. Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18, 421428.Google Scholar
Lacelle, D., Davila, A.F., Pollard, W.H., Andersen, D., Heldmann, J., Marinova, M. & McKay, C.P. 2011. Stability of massive ground ice bodies in University Valley, McMurdo Dry Valleys of Antarctica: using stable isotope O-H isotopes as tracers of sublimation in hyper-arid regions. Earth and Planetary Science Letters, 301, 403411.Google Scholar
Lacelle, D., Davila, A.F., Fisher, D., Pollard, W.H., DeWitt, R., Heldmann, J., Marinova, M.M. & McKay, C.P. 2013. Excess ground ice of condensation-diffusion origin in University Valley, Dry Valleys of Antarctica: evidence from isotope geochemistry and numerical modeling. Geochimica et Cosmochimica Acta, 120, 280297.CrossRefGoogle Scholar
Lancaster, N. 2004. Relations between aerodynamic and surface roughness in a hyper-arid cold desert: McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms, 29, 853867.Google Scholar
LaPalme, C., Lacelle, D., Pollard, W., Fisher, D., Davila, A. & McKay, C.P. 2017. Distribution and origin of ground ice in University Valley, McMurdo Dry Valleys, Antarctica. Antarctic Science, 29, 10.1017/S0954102016000572.Google Scholar
Liu, L., Sletten, R.S., Hagedorn, B., Hallet, B., McKay, C.P. & Stone, J.O. 2015. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica. Journal of Geophysical Research - Earth Surface, 120, 10.1002/2014JF003415.Google Scholar
Marinova, M.M., McKay, C.P., Pollard, W.H., Heldmann, J.L., Davila, A.F., Andersen, D.T., Jackson, W.A., Lacelle, D., Paulson, G. & Zacny, K. 2013. Distribution of depth to ice-cemented soils in the high-elevation Quartermain Mountains, McMurdo Dry Valleys, Antarctica. Antarctic Science, 25, 575582.Google Scholar
McKay, C.P. 2009. Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 8994.Google Scholar
McKay, C.P., Mellon, M.T. & Friedmann, E.I. 1998. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 3138.Google Scholar
Mellon, M.T. & Jakosky, B.M. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research - Planets, 98, 33453364.CrossRefGoogle Scholar
Mellon, M.T. & Phillips, R.J. 2001. Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research - Planets, 106, 23 16523 179.CrossRefGoogle Scholar
Mellon, M.T., Feldman, W.C. & Prettyman, T. H. 2004. The presence and stability of ground ice in the Southern Hemisphere of Mars. Icarus, 169, 324340.Google Scholar
Mellon, M.T., McKay, C.P. & Heldmann, J.L. 2014. Polygonal ground in the McMurdo Dry Valleys of Antarctica and its relationship to ice table depth and the recent Antarctic climate history. Antarctic Science, 26, 413426.Google Scholar
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., Searls, M.L., Blaney, D.L., Cull, S., Hecht, M.H., Heet, T.L., Keller, H.U., Lemmon, M.T., Markiewicz, W.J., Ming, D.W., Morris, R.V., Pike, W.T. & Zent, A.P. 2009. Ground ice at the Phoenix landing site: stability state and origin. Journal of Geophysical Research - Planets, 114, 10.1029/2009JE003417.Google Scholar
Mira, M., Valor, E., Boluda, R., Caselles, V. & Coll, C. 2007. Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. Journal of Geophysical Research - Earth Surface, 112, 10.1029/2007JF000749.Google Scholar
Ng, F., Hallet, B., Sletten, R.S. & Stone, J.O. 2005. Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 10.1130/G21064.1.Google Scholar
Nuding, D.L., Rivera-Valentin, E.G., Davis, R.D., Gough, R.V., Chevrier, V.F. & Tolbert, M.A. 2014. Deliquescence and efflorescence of calcium perchlorate: an investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420428.Google Scholar
Schörghofer, N. 2005. A physical mechanism for long-term survival of ground ice in Beacon Valley, Antarctica. Geophysical Research Letters, 32, 10.1029/2005GL023881.Google Scholar
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J. & Zent, A.P. 2009. H2O at the Phoenix landing site. Science, 325, 5861.CrossRefGoogle ScholarPubMed
Sugden, D.E., Marchant, D.R., Potter, N., Souchez, R.A., Denton, G.H., Swisher, C.C. & Tison, J.L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412414.Google Scholar
Svitek, T. & Murray, B. 1990. Winter frosts at the Viking Lander 2 site. Journal of Geophysical Research - Solid Earth and Planets, 95, 14951510.Google Scholar
Tamppari, L.K., Anderson, R.M., Archer, P.D., Douglas, S., Kounaves, S.P., McKay, C.P., Ming, D.W., Moore, Q., Quinn, J.E., Smith, P.H., Stroble, S. & Zent, A.P. 2012. Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Antarctic Science, 24, 211228.CrossRefGoogle Scholar
Ulrich, R. 2009. Modeling diffusion advection in the mass transfer of water vapor through Martian regolith. Icarus, 201, 127134.CrossRefGoogle Scholar
Williams, K.E., McKay, C.P. & Heldmann, J.L. 2015. Modeling the effects of Martian surface frost on ice table depth. Icarus, 261, 5865.Google Scholar