Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T19:11:14.012Z Has data issue: false hasContentIssue false

Ecological relationships and stoichiometry within a Maritime Antarctic watershed

Published online by Cambridge University Press:  20 March 2013

David Velázquez
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, Madrid 28049, Spain
Maria Ángeles Lezcano
Affiliation:
IMDEA Agua, Alcalá de Henares 28805, Spain
Ana Frias
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, Madrid 28049, Spain
Antonio Quesada*
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, Madrid 28049, Spain
*
*corresponding author: [email protected]

Abstract

During summer, ice-free areas are common in Maritime Antarctica, and vegetation and microbial communities frequently occur in the moist parts of catchments. In this paper, we present new data and evaluate the biomass, C, N, and P content of various types of vegetation, and the water catchment of an oligotrophic lake sited at Byers Peninsula, Livingston Island, South Shetland Islands. As the main results show, the total amount of C, N, and P contained in the organisms of the watershed is 144, 0.71 and 0.018 g m-2, respectively. According to element contents, 98% of the biological C from the watershed is within mosses and microbial mats structures (79.1 and 19.0% respectively). Also, 98.7% of the N is partially distributed between moss carpets, microbial mats and lichens, 55.2, 43.5, and 3.37 x 10-7% respectively. On the other hand, 90.2% of P is within moss carpets structures. Nutrient pools in the communities of Limnopolar Lake itself are a minor component of the whole catchment.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APHA, AWWA & WEF. 1992. Standard methods for the examination of water and wastewater, 18th ed. Washington DC: American Public Health Association, American Water Works Association and Water Environment Federation, 1100 pp.Google Scholar
Barrett, J.E., Virginia, R.A., Lyons, W.B., McKnight, D.M., Priscu, J.C., Doran, P.T., Fountain, A.G., Wall, D.H.Moorhead, D.L. 2007. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal Geophysical Research, 10.1029/2005JG000141.CrossRefGoogle Scholar
Camacho, A. 2006. Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the Maritime Antarctic and sub-Antarctic islands. Reviews in Environmental Science and Biotechnology, 5, 167185.CrossRefGoogle Scholar
Chown, S.L.Convey, P. 2007. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society, B362, 23072331.CrossRefGoogle Scholar
Davey, M.C. 1993a. Carbon and nitrogen dynamics in a Maritime Antarctic stream. Freshwater Biology, 30, 319330.CrossRefGoogle Scholar
Davey, M.C. 1993b. Carbon and nitrogen dynamics in a small pond in the Maritime Antarctic. Hydrobiologia, 257, 165175.CrossRefGoogle Scholar
Elser, J.J., Dobberfuhl, D.R., MacKay, N.A.Schampel, J.H. 1996. Organism size, life history, and N:P stoichiometry. Bioscience, 46, 674684.CrossRefGoogle Scholar
Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S.S., McCauley, E., Schulz, K.L., Siemann, E.H.Sterner, R.W. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578580.CrossRefGoogle ScholarPubMed
Fassnacht, S.R., Toro, M., Meiman, P.J.Whitt, Z.C. 2010. The effect of aeolian deposition on the surface roughness of melting snow, Byers Peninsula, Antarctica. Hydrological Processes, 24, 20072013.CrossRefGoogle Scholar
Fernández-Valiente, E., Quesada, A., Howard-Williams, C.Hawes, I. 2001. N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecology, 42, 338349.CrossRefGoogle ScholarPubMed
Fernández-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W.F.Quesada, A. 2007. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59, 377385.CrossRefGoogle Scholar
Green, T.G.A., Sancho, L.G., Tuerk, R., Seppelt, R.D.Hogg, I.D. 2011. High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 12111220.CrossRefGoogle Scholar
Heywood, R.B. 1967. Freshwater lakes of Signy Island and their fauna. Philosophical Transactions of the Royal Society, B252, 347362.Google Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McInnes, S.J., Sands, C.J., Fernández-Carazo, R., Wilmotte, A., De Wever, A., Peeters, K., Tavernier, I.Willems, A. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, 4, 197214.CrossRefGoogle Scholar
Howard-Williams, C., Priscu, J.C.Vincent, W.F. 1989. Nitrogen dynamics in two Antarctic streams. Hydrobiologia, 172, 5161.CrossRefGoogle Scholar
Lajtha, K.Schlesinger, W.H. 1988. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology, 69, 2439.CrossRefGoogle Scholar
Nkem, J.N., Virginia, R.A., Barrett, J.E., Wall, D.H.Li, G. 2006. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 29, 643651.CrossRefGoogle Scholar
Priscu, J.C. 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biology, 34, 215227.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C.Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645645.CrossRefGoogle ScholarPubMed
Redfield, A.C., Ketchum, B.H.Richards, F.A. 1963. The influence of organisms on the composition of seawater. In Hill, M.N., ed. The composition of seawater. Comparative and descriptive oceanography. Cambridge, MA: Harvard University Press, 2677.Google Scholar
Sorensen, P.L., Jonasson, S.Michelsen, A. 2006. Nitrogen fixation, denitrification and ecosystem nitrogen pools in relation to vegetation development in the subarctic. Arctic, Antarctic, and Alpine Research, 38, 263272.CrossRefGoogle Scholar
Sterner, R.W.Hessen, D.O. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25, 129.CrossRefGoogle Scholar
Tang, E.P.Y., Tremblay, R.Vincent, W.F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to low temperature? Journal of Phycology, 33, 171181.CrossRefGoogle Scholar
Toro, M., Camacho, A., Rochera, C., Rico, E., Bañón, M., Fernández-Valiente, E., Marco, E., Justel, A., Avendaño, M.C., Ariosa, Y., Vincent, W.F.Quesada, A. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctica. Polar Biology, 30, 635649.CrossRefGoogle Scholar
Urabe, J., Naeem, S., Raubenheimer, D.Elser, J.J. 2010. The evolution of biological stoichiometry under global change. Oikos, 119, 737740.CrossRefGoogle Scholar
Vincent, W.F. 2000. Cyanobacterial dominance in the polar regions. In Whitton, B.A. & Potts, M., eds. The ecology of cyanobacteria. Dordrecht: Kluwer, 321340.Google Scholar
Vincent, W.F., Castenholz, R.W., Downes, M.T.Howard-Williams, C. 1993. Antarctic cyanobacteria: light, nutrients and photosynthesis in the microbial mat environment. Journal of Phycology, 29, 745755.CrossRefGoogle Scholar
Vinocur, A.Pizarro, H. 2000. Microbial mats of twenty-six lakes from Potter Peninsula, King George Island, Antarctica. Hydrobiologia, 437, 171185.CrossRefGoogle Scholar
Vitousek, P.M.Farrington, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 6375.CrossRefGoogle Scholar
Woo, M.K. 2000. McMaster River and Arctic hydrology. Physical Geography, 21, 466484.CrossRefGoogle Scholar
Yergeau, E.Kowalchuk, G.A. 2008. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environmental Microbiology, 10, 22232235.CrossRefGoogle ScholarPubMed
Yu, Q., Chen, Q.S., Elser, J.J., He, N.P., Wu, H.H., Zhang, G.M., Wu, J.G., Bai, Y.F.Han, X.G. 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 13901399.CrossRefGoogle ScholarPubMed