Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T06:20:54.173Z Has data issue: false hasContentIssue false

Distribution of euphausiid larvae along the coast of East Antarctica in the Dumont d'Urville Sea (139–145°E) during summer 2004

Published online by Cambridge University Press:  16 December 2008

Carole Vallet*
Affiliation:
Université d'Artois, centre IUFM Nord - Pas de Calais, 10 rue Hippolyte Adam, 62230 Outreau, France Université du Littoral Côte d'Opale, Laboratoire d'Océanologie et de Géosciences, CNRS, UMR 8187 LOG, 32 avenue Foch, 62930 Wimereux, France
Philippe Koubbi
Affiliation:
Université Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, FranceCNRS, UMR 7093, LOV, 06230 Villefranche-sur-Mer, France
Emmanuelle Sultan
Affiliation:
LOCEAN/MNHN, Université Pierre et Marie Curie, case 100, 4 place Jussieu, 75005 Paris, France
Anne Goffart
Affiliation:
Laboratoire d'Océanologie, MARE Center, Université de Liège, Bat. B6c, Allée de la Chimie, 3, 4000 Liège, Belgium
Kerrie M. Swadling
Affiliation:
Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute and School of Zoology, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
Simon W. Wright
Affiliation:
Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, 203 Channel Highway, Kingston, TAS 7050, Australia

Abstract

The distribution of euphausiid larvae along the coast of Terre Adélie, Antarctica, was assessed using oblique tows of a double-framed bongo net at 38 stations during summer 2004. Larvae of Euphausia crystallorophias and Thysanoessa macrura were observed. For E. crystallorophias larvae, the calyptopis I stage was dominant along the coast, while the most commonly observed stage of T. macrura was the furcilia. The distribution of E. crystallorophias larvae were correlated with abiotic factors, including depth and sea surface salinity, whereas those of T. macrura larvae were correlated with biotic factors, especially chlorophyll a and nitrate. Developmental stages of both species increased in age from west to east in the survey area, with younger developmental stages (metanauplius and calyptopis I) in the western part of the region and older stages (calyptopis II and III and furcilia I to VI) in the eastern part near the Mertz Glacier Tongue (MGT). It is suggested that these patterns could be linked with the water circulation and wind: near the MGT gyres could concentrate all developmental stages of both species near the coast, while katabatic winds near Dumont d'Urville will promote larval advection seawards, with younger stages near the coast and older stages further offshore.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnould, J.P.Y. & Whitehead, M.D. 1991. The diet of Antarctic petrels, cape petrels and southern fulmars rearing chicks in Prydz Bay. Antarctic Science, 3, 1927.CrossRefGoogle Scholar
Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432, 100103.CrossRefGoogle ScholarPubMed
Beans, C., Hecq, J.H., Chalon, C., Koubbi, P., Vallet, C., Wright, S. & Goffart, A. 2008. A study of the diatom-dominated microplankton summer assemblages in coastal waters from Terre Adélie to the Mertz Glacier, East Antarctica (139°E–145°E). Polar Biology, 3, 1101.CrossRefGoogle Scholar
Bindoff, N.L., Rosenberg, M.A & Warner, M.J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Research II, 47, 22992326.CrossRefGoogle Scholar
Bindoff, N.L., Williams, G.D. & Allison, I. 2001. Sea-ice growth and water mass modification in the Mertz Glacier Polynya during winter. Annals of Glaciology, 33, 399406.CrossRefGoogle Scholar
Brinton, E. & Townsend, A.W. 1984. Regional relationships between development and growth in larvae of Antarctic krill, Euphausia superba, from field samples. Journal of Crustacean Biology, 4, 224246.CrossRefGoogle Scholar
Brinton, E. & Townsend, A.W. 1991. Developmental rates and habitat shifts in the Antarctic neritic euphausiid Euphausia crystallorophias. Deep-Sea Research, 38, 11951211.CrossRefGoogle Scholar
Conover, R.J. & Huntley, M. 1991. Copepods in ice-covered seas - distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. Journal of Marine Systems, 2, 141.CrossRefGoogle Scholar
Daly, K.L. & Zimmerman, J.J. 2004. Comparisons of morphology and neritic distributions of Euphausia crystallorophias and Euphausia superba furcilia during autumn and winter west of the Antarctic Peninsula. Polar Biology, 28, 7281.Google Scholar
Everson, I. 1984. Zooplankton. In Laws, R.M., ed. Antarctic ecology. London: Academic Press, 463490.Google Scholar
Falk-Petersen, S., Sargent, J.R., Lønne, O.J. & Timofeev, S. 1999. Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biology, 21, 3747.CrossRefGoogle Scholar
Fevolden, S.E. 1979. Investigations on krill (Euphausiacea) sampled during the Norwegian Antarctic research expedition 1976–1977. Sarsia, 64, 189198.CrossRefGoogle Scholar
Fevolden, S.E. 1980. Krill off Bouvetöya and in the southern Weddell Sea with a description of larval stages of Euphausia crystallorophias. Sarsia, 65, 149162.CrossRefGoogle Scholar
Foster, B.A., Cargill, J.M. & Montgomer, J.Y.C. 1987. Planktivory in Pagothenia borchgrevinki (Pisces: Nototheniidae) in McMurdo Sound, Antarctica. Polar Biology, 8, 4954.CrossRefGoogle Scholar
Gordon, A.L. & Tchernia, P. 1972. Waters of the continental margin of Adelie coast, Antarctica. Antarctic Research Series, 19, 5969.CrossRefGoogle Scholar
Green, K. & Williams, R. 1986. Observations on food remains in faeces of elephant, leopard and crabeater seals. Polar Biology, 6, 4345.CrossRefGoogle Scholar
Harrington, S.A. & Thomas, P.G. 1987. Observations on spawning by Euphausia crystallorophias from waters adjacent to Enderby Land (East Antarctica) and speculations on the early ontogenetic ecology of neritic Euphausiids. Polar Biology, 7, 9395.CrossRefGoogle Scholar
Harris, P.T., Brancolini, G., Armand, L., Busetti, M., Beaman, R.J., Giorgetti, G., Presti, M. & Trincardi, F. 2001. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Marine Geology, 179, 18.CrossRefGoogle Scholar
Hecq, J.H. 2003. Modélisation conceptuelle et numérique de l'écosystème planctonique océanique. Bulletin de la Société Royale des Sciences de Liège, 72, 93302.Google Scholar
Hempel, G. 1983. FIBEX - an international survey in the Southern Ocean review and outlook. Memoirs National Institute of Polar Research, 27, 115.Google Scholar
Hempel, I., Hempel, G. & de Baker, A. C. 1979. Early life history stages of krill (Euphausia superba) in Bransfield Strait and Weddell Sea. Meeresforschung, 27, 267281.Google Scholar
Hofmann, E.E., Klinck, J.M., Daly, K.L., Torres, J.J. & Fraser, W.R. 2002. US southern ocean global ocean ecosystems dynamics program. Oceanography, 15, 6474.CrossRefGoogle Scholar
Hosie, G.W. 1991. Distribution and abundance of euphausiid larvae in the Prydz Bay region, Antarctica. Antarctic Science, 3, 167180.CrossRefGoogle Scholar
Hosie, G.W. & Kirkwood, J.M. 1986. Euphausiid larvae collected from the Prydz Bay region during the Nella Dan Cruise (SIBEX I). Memoirs National Institute of Polar Research, 40, 110116.Google Scholar
Hosie, G.W., Ikeda, T. & Stolp, M. 1988. Distribution, abundance and population structure of the Antarctic krill (Euphausia superba Dana) in the Prydz Bay region, Antarctica. Polar Biology, 8, 213224.CrossRefGoogle Scholar
Hosie, G.W., Schultz, M.B., Kitchener, J.A., Cochran, T.G. & Richards, K. 2000. Macrozooplankton community structure off East Antarctica (80–150°E) during the austral summer of 1995/1996. Deep-Sea Research II, 47, 24372463.CrossRefGoogle Scholar
Hosie, G.W., Cochran, T.G., Pauly, T., Beaumont, K.L., Wright, S.W. & Kitchener, J.A. 1997. Zooplankton community structure of Prydz Bay, Antarctica, January–February 1993. Proceedings of the NIPR Symposium on Polar Biology, 10, 90133.Google Scholar
Ikeda, T. 1986. Preliminary observations on the development of the larvae of Euphausia crystallorophias Holt and Tattersall in the laboratory (extended abstract). Memoirs National Institute of Polar Research, 40, 183186.Google Scholar
Jennings, J.C., Gordon, L.I. & Nelson, D.M. 1984. Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature, 309, 5154.CrossRefGoogle Scholar
Kaufmann, R.S., Fisher, E.C, Gill, W.H., King, A.L., Laubacher, M. & Sullivan, B. 2003. Temporal patterns in the distribution, biomass and community structure of macrozooplankton and micronekton within Port Foster, Deception Island, Antarctica. Deep-Sea Research II, 50, 17651785.CrossRefGoogle Scholar
Kirkwood, J.M. 1982. A guide to the Euphausiacea of the Southern Ocean. Australian National Antarctic Research Expeditions Research Notes, 1, 145.Google Scholar
Kirkwood, J.M. 1996. The development rate of Euphausia crystallorophias larvae in Ellis Fjord, Vestfold Hills, Antarctica. Polar Biology, 16, 527530.CrossRefGoogle Scholar
Kittel, W. & Stepnik, R. 1983. Distribution of E. crystallorophias, E. frigida, E. triancatha and Thysanoessa macrura (Crustacea, Euphausiacea) in the southern Drake Passage and Bransfield Strait in February and March 1981. Polish Polar Research, 4, 719.Google Scholar
Koubbi, P., Duhamel, G., Hecq, J.H., Beans, C., Loots, C., Pruvost, P., Tavernier, E., Vacchi, M. & Vallet, C. In press. Ichtyoplankton in the neritic and coastal zone of Antarctica and Subantarctic islands: a review. Journal of Marine System.Google Scholar
Lepš, J. & Šimlauer, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, 282 pp.CrossRefGoogle Scholar
Makarov, R.R. 1979. Larval distribution and reproductive ecology of Thysanoessa macrura (Crustacea: Euphausiacea) in the Scotia Sea. Marine Biology, 52, 377386.CrossRefGoogle Scholar
Marr, J.W.S. 1962. The natural history and geography of the Antarctic krill (Euphausia superba). Discovery Reports, 32, 33464.Google Scholar
Menshenina, L.L. & Spiridonov, V.A. 1991. Rates of larval development of the Antarctic euphausiids. Oceanology, 31, 451456.Google Scholar
Nicol, S., Pauly, T., Bindoff, N.L. & Strutton, P.G. 2000. “BROKE” a biological/oceanographic survey off the coast of East Antarctica (80–150°E) carried out in January–March 1996. Deep Sea Research II, 47, 22812297.CrossRefGoogle Scholar
Nordhausen, W. 1994. Winter abundance and distribution of Euphausia superba, E. crystallorophias and Thysanoessa macrura in Gerlache Strait and Crystal Sound, Antarctica. Marine Ecology Progress Series, 109, 131142.CrossRefGoogle Scholar
Pakhomov, E.A. & Perissinotto, R. 1997. Spawning success and grazing impact of Euphausia crystallorophias in the Antarctic shelf region. In Battaglia, B., Valencia, J. & Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 187192.Google Scholar
Rakusa-Suszczewski, S. 1984. Krill larvae in the Atlantic sector of the Southern Ocean during FIBEX 1981. Polar Biology, 3, 141147.CrossRefGoogle Scholar
Rivoirard, J., Simmonds, J., Foote, K.G., Fernades, P.G. & Bez, N. 2000. Geostatistics for estimating fish abundance. Oxford: Blackwell Science, 216 pp.CrossRefGoogle Scholar
Rodary, D., Wienecke, B.C. & Bost, C.A. 2000. Diving behaviour of Adélie penguins (Pygoscelis adeliae) at Dumont d'Urville, Antarctica: nocturnal patterns of diving and rapid adaptations to changes in sea-ice condition. Polar Biology, 23, 113120.CrossRefGoogle Scholar
Smith, P.E. & Richardson, S. 1977. Standard techniques for pelagic fish eggs and larval surveys. FAO Fisheries Technical Papers, 175, 816.Google Scholar
Tréguer, P. & Le Corre, P. 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer. Brest: Laboratoire d'Océanographie Chimique, Université de Brest Occidentale.Google Scholar
Vaillancourt, R.D, Sambrotto, R.N., Green, S. & Matsuda, A. 2003. Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier Region of East Antarctica. Deep-Sea Research II, 50, 14151440.CrossRefGoogle Scholar
Wendler, G., Stearns, C., Weidner, G., Dargaud, G. & Parish, T. 1997. On the extraordinary katabatic winds of Adélie Land. Journal of Geophysical Research, 102, 44634474.CrossRefGoogle Scholar
Whitworth, T., Orsi, A.H., Kim, S.J. & Nowlin, W.D. Jr. 1998. Water masses and mixing near the Antarctic Slope Front. Antarctic Research Series, 75, 127.Google Scholar
Williams, R. 1985. Trophic relationships between pelagic fish and euphausiids in Antarctic waters. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds Antarctic nutrient cycles and food webs. Berlin: Springer, 452459.CrossRefGoogle Scholar
Williams, G.D. & Bindoff, N.L. 2003. Wintertime oceanography of the Adélie Depression. Deep-Sea Research II, 50, 13731392.CrossRefGoogle Scholar
Yamada, S. & Kawamura, A. 1986. Some characteristics of the zooplankton distribution in the Prydz Bay region of the Indian Ocean sector of the Antarctic Ocean in the summer of 1983–1984. Memoirs of the National Institute of Polar Research, 44, 8695.Google Scholar
Zhou, M., Nordhausen, W. & Huntley, M. 1994. ADCP measurements of the distribution and abundance of euphausiids near the Antarctic Peninsula in winter. Deep Sea Research and Oceanographic Research Papers, 41, 14251445.CrossRefGoogle Scholar