Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T15:25:26.563Z Has data issue: false hasContentIssue false

Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land

Published online by Cambridge University Press:  10 November 2009

David L. Barbeau Jr*
Affiliation:
Tectonics & Sedimentation Laboratory, Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA
Justin T. Davis
Affiliation:
Tectonics & Sedimentation Laboratory, Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA
Kendra E. Murray
Affiliation:
Arizona LaserChron Center, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Victor Valencia
Affiliation:
Arizona LaserChron Center, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
George E. Gehrels
Affiliation:
Arizona LaserChron Center, Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Khandaker M. Zahid
Affiliation:
Tectonics & Sedimentation Laboratory, Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA
David J. Gombosi
Affiliation:
Tectonics & Sedimentation Laboratory, Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA

Abstract

Metasedimentary rocks constitute an important but comparatively poorly understood part of the Antarctic Peninsula. Herein we report single-grain U-Pb detrital-zircon ages from samples of the Trinity Peninsula and Botany Bay Groups of north-western Graham Land. All studied samples are dominated by a large and narrowly defined population of late Palaeozoic zircons. Significant early–middle Palaeozoic and minor Neoproterozoic and Mesoproterozoic sub-populations constitute the majority of pre-Carboniferous grains. These detrital-zircon age populations are consistent with sediment derivation entirely from western Gondwana sources. Despite the clear Gondwana signatures, our data suggest that the Trinity Peninsula Group province was either a parautochthonous peri-Gondwanan terrane later accreted to the Antarctic Peninsula, or a significant topographic barrier precluded voluminous sediment contributions from the interior of Gondwana. Statistical comparisons with similar metasedimentary complexes of southern South America, the South Shetland Islands and eastern New Zealand indicate a diversity of sediment provenance not previously recognized, but may provide a means to better determine the pre-break-up configuration of western Gondwana. Although insufficient to definitively restore Antarctic Peninsula components adjacent to South American complexes, some Trinity Peninsula Group samples exhibit robust affinities to the Miers Bluff Formation in the South Shetland Islands and the Duque de York and Main Range Metamorphic Complexes of the Patagonian Andes.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.J., Campbell, H.J. Griffin, W.L. 2007. Provenance comparisons of Permian to Jurassic tectonostratigraphic terranes in New Zealand: perspectives from detrital zircon age patterns. Geological Magazine, 144, 701729.CrossRefGoogle Scholar
Barbeau, D.L., Olivero, E.B., Swanson-Hysell, N.L., Zahid, K.M., Murray, K.E. Gehrels, G.E. 2009. Detrital-zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters, 284, 489503.CrossRefGoogle Scholar
Bradshaw, J.D., Pankhurst, R.J., Weaver, S.D., Storey, B.C., Muir, R.J. Ireland, T.R. 1997. New Zealand superterranes recognized in Marie Byrd Land and Thurston Island. In Ricci, C.A., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica Publications, 429436.Google Scholar
Castillo, P., Lacassie, J.P., Hervé, F. Fanning, C.M. In press. Sedimentary provenance of Trinity Peninsula Group, Antarctic Peninsula: petrography, geochemistry and SHRIMP U-Pb zircon age constraints. Geophysical Research Abstracts, 11.Google Scholar
Dalziel, I.W.D. Elliot, D.H. 1982. West Antarctica: problem child of Gondwanaland. Tectonics, 1, 319.CrossRefGoogle Scholar
Dalziel, I.W.D., Elliot, D.H., Jones, D.L., Thomson, J.W., Thomson, M.R.A., Wells, N.A. Zinsmeister, W.J. 1981. The geological significance of some Triassic microfossils from the South Orkney Islands, Scotia Ridge. Geological Magazine, 118, 1525.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P.C., Vaughan, A.P.M. Leat, P.T. 2006. New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophysical Research Letters, 33, 10.1029/2005GL024636.CrossRefGoogle Scholar
Flowerdew, M. 2008. On the age and relation between metamorphic gneisses and the Trinity Peninsula Group, Bowman Coast, Graham Land, Antarctica. Antarctic Science, 20, 511512.CrossRefGoogle Scholar
Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M., Horstwood, M.S.A. Fanning, C.M. 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula; a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology, 151, 751768.CrossRefGoogle Scholar
Hervé, F. Fanning, C.M. 2001. Late Triassic detrital zircons in meta-turbidites of the Chonos Metamorphic Complex, southern Chile. Revista Geológica de Chile, 28, 91104.CrossRefGoogle Scholar
Hervé, F., Fanning, C.M. Pankhurst, R.J. 2003. Detrital zircon age patterns and provenance in the metamorphic complexes of Southern Chile. Journal of South American Earth Sciences, 16, 107123.CrossRefGoogle Scholar
Hervé, F., Miller, H. Pimpirev, C.H. 2006a. Patagonia–Antarctica connections before Gondwana break-up. In Futterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Berlin: Springer, 217228.CrossRefGoogle Scholar
Hervé, F., Faúndez, V., Brix, M. Fanning, C.M. 2006b. Jurassic sedimentation of the Miers Bluff Formation, Livingston Island, Antarctica: evidence from SHRIMP U-Pb ages of detrital and plutonic zircons. Antarctic Science, 18, 229238.CrossRefGoogle Scholar
Hervé, F., Loske, W., Miller, H. Pankhurst, R.J. 1991. Chronology of provenance, deposition and metamorphism of deformed fore-arc sequences, southern Scotia Arc. In Thomson, M.R.A., Crame, J.A. & Thomson, J.W., eds. Geological evolution of Antarctica. Cambridge: Cambridge University Press, 429435.Google Scholar
Hunter, M.A., Cantrill, D.J., Flowerdew, M.J. Millar, I.L. 2005. Mid-Jurassic age for the Botany Bay Group; implications for Weddell Sea basin creation and Southern Hemisphere biostratigraphy. Journal of the Geological Society, 162, 745748.CrossRefGoogle Scholar
Hyden, G. Tanner, P.W.G. 1981. Late Palaeozoic–early Mesozoic fore-arc basin sedimentary rocks at the Pacific margin in western Antarctica. Geologische Rundschau, 70, 529541.CrossRefGoogle Scholar
Jacobs, J., Fanning, C.M., Henjes-Kunst, F., Olesch, M. Paech, H.J. 1998. Contribution of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in Central Dronning Maud Land. Journal of Geology, 106, 385406.CrossRefGoogle Scholar
Kellogg, K.S. Rowley, P.D. 1989. Structural geology and tectonics of the Orville Coast region, southern Antarctica Peninsula. US Geological Survey Professional Paper, 1498, 125.Google Scholar
Lawver, L.A., Dalziel, I.W.D. Gahagan, L.M. 1998. A tight fit early Mesozoic Gondwana, a plate reconstruction perspective. Memoirs of the National Institute of Polar Research Special Issue, 53, 214229.Google Scholar
Leat, P.T., Storey, B.C. Pankhurst, R.J. 1993. Geochemistry of Palaeozoic–Mesozoic Pacific Rim orogenic magmatism, Thurston Island area, West Antarctica. Antarctic Science, 5, 281296.CrossRefGoogle Scholar
Leat, P.T., Scarrow, J.H. Millar, I.L. 1995. On the Antarctic Peninsula batholith. Geological Magazine, 132, 399412.CrossRefGoogle Scholar
Loske, W.P., Miller, H. Kramm, U. 1988. U-Pb systematics of detrital zircons from low-grade metamorphic sandstones of the Trinity Peninsula Group (Antarctica). Journal of South American Earth Sciences, 1, 301307.CrossRefGoogle Scholar
Lucassen, F., Becchio, R., Wilke, H.G., Franz, G., Thirlwall, M.F., Viramonte, J. Wemmer, K.P. 2000. Proterozoic–Paleozoic development of the basement of the Central Andes (18–26°S) - a mobile belt of the South American craton. Journal of South American Earth Sciences, 13, 697715.CrossRefGoogle Scholar
Millar, I.L., Pankhurst, R.J. Fanning, C.M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana margin. Journal of the Geological Society, 159, 145157.CrossRefGoogle Scholar
Millar, I.L., Willan, R.C.R., Wareham, C.D. Boyce, A.J. 2001. The role of crustal and mantle sources in the genesis of granitoids of the Antarctic Peninsula and adjacent crustal blocks. Journal of the Geological Society, 158, 855867.CrossRefGoogle Scholar
Miller, H., Loske, W.P. Kramm, U. 1987. Zircon provenance and Gondwana reconstruction: U-Pb data of detrital zircons from Triassic Trinity Peninsula Formation metasandstones. Polarforschung, 57, 5969.Google Scholar
Pankhurst, R.J. 1990. The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. Geological Society of America Special Paper, 241, 117CrossRefGoogle Scholar
Pankhurst, R.J., Rapela, C.W., Fanning, C.M. Márquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth Science Reviews, 76, 235257.CrossRefGoogle Scholar
Pankhurst, R.J., Riley, T.R., Fanning, C.M. Kelley, S. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41, 605625.CrossRefGoogle Scholar
Pankhurst, R.J., Rapela, C.W., Caminos, R., Llambias, E. Parica, C. 1992. A revised age for the granites of the central Somuncura Batholith, North Patagonian Massif. Journal of South American Earth Sciences, 5, 321325.CrossRefGoogle Scholar
Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. Ireland, T.R. 1998. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal of Geophysical Research, B103, 25292547.CrossRefGoogle Scholar
Pimpirev, C., Stoykova, K., Ivanov, M. Dimov, V. 2006. The Miers Bluff Formation, Livingston Island, South Shetland Islands - part of the Late Jurassic–Cretaceous depositional history of the Antarctic Peninsula. In Futterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Berlin: Springer, 249254.CrossRefGoogle Scholar
Rapela, C.W. Pankhurst, R.J. 1996. Monzonite suites; the innermost Cordilleran plutonism of Patagonia. Geological Society of America Special Paper, 315, 193203.Google Scholar
Riley, T.R. Leat, P.T. 1999. Large volume silicic volcanism along the proto-Pacific margin of Gondwana: lithological and stratigraphical investigations from the Antarctic Peninsula. Geological Magazine, 136, 116.CrossRefGoogle Scholar
Saunders, A.D., Tarney, J. Weaver, S.D. 1980. Transverse geochemical variations across the Antarctic Peninsula; implications for the genesis of calc–alkaline magmas. Earth and Planetary Science Letters, 46, 344360.CrossRefGoogle Scholar
Shu, O., Xi-Guang, D., Yan-Bin, S., Xiang-Shen, Z. Xiao-Han, L. 2000. Late Triassic plant microfossils from Miers Bluff Formation of Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 12, 217228.CrossRefGoogle Scholar
Smellie, J. Millar, I.L. 1995. New K–Ar isotopic ages of schists from Nordenskjöld Coast, Antarctic Peninsula; oldest part of the Trinity Peninsula Group? Antarctic Science, 7, 191196.CrossRefGoogle Scholar
Stacey, J.S. Kramers, J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207221.CrossRefGoogle Scholar
Stoykova, K., Pimpirev, C.H. Dimov, D. 2002. Calcareous nannofossils from the Miers Bluff Formation (Livingston Island, South Shetland Islands, Antarctica): first evidence for a late Cretaceous age. Nannoplankton Research, 24, 166167.Google Scholar
Tangeman, J.A., Mukasa, S.B. Grunow, A.M. 1996. Zircon U-Pb geochronology of plutonic rocks from the Antarctic Peninsula: confirmation of the presence of unexposed Paleozoic crust. Tectonics, 15, 13091324.CrossRefGoogle Scholar
Thomson, M.R.A. 1975. New palaeontological and lithological observations on the Legoupil Formation, north-west Antarctic Peninsula. British Antarctic Survey Bulletin, Nos 41–42, 169185.Google Scholar
Vaughan, A.P.M. Pankhurst, R.J. 2008. Tectonic overview of the West Gondwana margin. Gondwana Research, 13, 150162.CrossRefGoogle Scholar
Vaughan, A.P.M. Storey, B.C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, 157, 12431256.CrossRefGoogle Scholar
Vaughan, A.P.M., Kelley, S.P. Storey, B.C. 2002a. Mid-Cretaceous ductile deformation on the Eastern Palmer Land Shear Zone, Antarctica, and implications for timing of Mesozoic terrane collision. Geological Magazine, 139, 465471.CrossRefGoogle Scholar
Vaughan, A.P.M., Pankhurst, R.J. Fanning, C.M. 2002b. A mid-Cretaceous age for the Palmer Land event, Antarctic Peninsula: implications for terrane accretion timing and Gondwana palaeolatitudes. Journal of the Geological Society, 159, 113116.CrossRefGoogle Scholar
Wendt, A.S., Vaughan, A.P.M. Tate, A. 2008. Metamorphic rocks in the Antarctic Peninsula region. Geological Magazine, 145, 655676.CrossRefGoogle Scholar
Willan, R.C.R. 2003. Provenance of Triassic–Cretaceous sandstones in the Antarctic Peninsula: implications for terrane models during Gondwana break-up. Journal of Sedimentary Research, 73, 10621077.CrossRefGoogle Scholar
Willan, R.C.R., Pankhurst, R.J. Hervé, F. 1994. A probable early Triassic age for the Miers Bluff Formation, Livingston Island, South Shetland Islands. Antarctic Science, 6, 401408.CrossRefGoogle Scholar
Supplementary material: PDF

Barbeau supplementary material

Table.pdf

Download Barbeau supplementary material(PDF)
PDF 237.9 KB