Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:07:20.116Z Has data issue: false hasContentIssue false

The biology of an Antarctic rhodophyte, Palmaria decipiens: recent advances

Published online by Cambridge University Press:  02 September 2011

Susanne Becker*
Affiliation:
Department of Marine Botany, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany
María Liliana Quartino
Affiliation:
Argentinean Antarctic Institute, Department of Coastal Biology, Cerrito 1248, (1010AAZ) Buenos Aires, Argentina
Gabriela Laura Campana
Affiliation:
Argentinean Antarctic Institute, Department of Coastal Biology, Cerrito 1248, (1010AAZ) Buenos Aires, Argentina National University of Luján, Department of Basic Sciences (PIEA), Rutas 5 y 7 (6700) Luján, Buenos Aires, Argentina
Philip Bucolo
Affiliation:
1300 University Boulevard, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
Christian Wiencke
Affiliation:
Alfred Wegener Institute, Am Handelshafen 12, PO Box 120161, 27570 Bremerhaven, Germany
Kai Bischof
Affiliation:
Department of Marine Botany, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany

Abstract

Palmaria decipiens (Reinsch) R.W. Ricker (1987) represents one of the dominant rhodophyte species in Antarctic coastal ecosystems. Due to its high abundance in the intertidal and upper subtidal it plays a key role in ecosystem structure and function, providing habitat, food and shelter for a multitude of associated organisms. The physiology, reproductive strategy and life cycle of P. decipiens is considered as being well adapted to the Antarctic environment, which is characterized by permanent low water temperatures and a strong seasonality in light climate. With its obvious ecological significance and adaptive strategies P. decipiens was frequently studied as a typical representative of an endemic Antarctic macroalga. Here we provide an overview of the recent literature, summarizing the knowledge gained about the alga during the last 25 years. This review focuses on the species life cycle and physiological responses, such as temperature requirements, photosynthetic characteristics, pigment content and protective mechanisms with regard to enhanced ultraviolet radiation (UV-B radiation, 280–315 nm and UV-A radiation, 315–400 nm). The ecology of P. decipiens is reviewed focussing on grazing activity and abundance patterns. Since most studies on P. decipiens have been conducted at King George Island off the western Antarctic Peninsula this overview serves as a summary of baseline data from an ecosystem particularly prone to environmental change.

Type
Review
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, C.D., ed. 2008. Algal chemical ecology. Berlin: Springer, 313 pp.CrossRefGoogle Scholar
Amsler, C.D., Iken, K., McClintock, J.B. Baker, B.J. 2009. Defenses of polar macroalgae against herbivores and biofoulers. Botanica Marina, 52, 535545.CrossRefGoogle Scholar
Amsler, C.D., Rowley, R.J., Laur, D.R., Quetin, L.B. Ross, R.M. 1995. Vertical-distribution of Antarctic peninsular macroalgae: cover, biomass and species composition. Phycologia, 34, 424430.CrossRefGoogle Scholar
Amsler, C.D., Iken, K., McClintock, J.B., Amsler, M.O., Peters, K.J., Hubbard, J.M., Furrow, F.B. Baker, B.J. 2005. Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Marine Ecology Progress Series, 294, 141159.CrossRefGoogle Scholar
Aro, E.M., Virgin, I. Andersson, B. 1993. Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochimica Biophysica Acta, 1143, 113134.CrossRefGoogle ScholarPubMed
Aro, E.M., Suorsa, M., Rokka, A., Allahverdiyeva, Y., Paakkarinen, V., Saleem, A., Battchikova, N. Rintamaki, E. 2005. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany, 56, 347356.CrossRefGoogle ScholarPubMed
Aumack, C.F., Amsler, C.D., McClintock, J.B. Baker, B.J. 2010. Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. European Journal of Phycology, 45, 1926.CrossRefGoogle Scholar
Becker, S., Graeve, M. Bischof, K. 2010. Photosynthesis and lipid composition in the Antarctic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biology, 33, 945955.CrossRefGoogle Scholar
Becker, S., Walter, B. Bischof, K. 2009. Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Botanica Marina, 52, 609616.CrossRefGoogle Scholar
Bischoff-Bäsmann, B. Wiencke, C. 1996. Temperature requirements for growth and survival of Antarctic rhodophyta. Journal of Phycology, 32, 525535.CrossRefGoogle Scholar
Braun, M. Gossmann, H. 2002. Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. In Beyer, L. & Bölter, M., eds. Geoecology of Antarctic ice-free coastal landscapes. Berlin: Springer, 7590.CrossRefGoogle Scholar
Bucolo, P., Amsler, C.D., McClintock, J.B. Baker, B.J. 2011. Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. Journal of Experimental Marine Biology and Ecology, 396, 202206.CrossRefGoogle Scholar
Campana, G.L., Quartino, M.L., Yousif, A. Wulff, A. 2008. Impacts of UV radiation and grazing on the structure of a subtidal benthic diatom assemblage in Antarctica. Berichte zur Polarforschung, 571, 302310.Google Scholar
Campana, G.L., Zacher, K., Fricke, A., Molis, M., Wulff, A., Quartino, M.L. Wiencke, C. 2009. Drivers of colonization and succession in polar benthic macro- and microalgal communities. Botanica Marina, 52, 655667.CrossRefGoogle Scholar
Chung, H., Oh, Y.S., Lee, I.K. Kim, D.Y. 1994. Macroalgal vegetation of Maxwell Bay in King George Island, Antarctica. Korean Journal of Phycology, 9, 4758.Google Scholar
DeLaca, T.E. Lipps, J.H. 1976. Shallow-water marine associations, Antarctic Peninsula. Antarctic Journal of the United States, 11(1), 1220.Google Scholar
Drew, E.A. 1977. Physiology of photosynthesis and respiration in some Antarctic marine algae. British Antarctic Survey Bulletin, No. 46, 5976.Google Scholar
Dunlap, W.C. Shick, J.M. 1998. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. Journal of Phycology, 34, 418430.CrossRefGoogle Scholar
Eggert, A. Wiencke, C. 2000. Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biology, 23, 609618.CrossRefGoogle Scholar
Farman, J.C., Gardiner, B.G. Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClNx/Nox interaction. Nature, 315, 207210.CrossRefGoogle Scholar
Franklin, L.A. Forster, R.M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. European Journal of Phycology, 32, 207232.Google Scholar
Fredersdorf, J. Bischof, K. 2007. Irradiance of photosynthetically active radiation determines ultraviolet-susceptibility of photosynthesis in Ulva lactuca L. (Chlorophyta). Phycological Research, 55, 295301.CrossRefGoogle Scholar
Fredersdorf, J., Müller, R., Becker, S., Wiencke, C. Bischof, K. 2009. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia, 160, 483492.CrossRefGoogle ScholarPubMed
Graeve, M., Kattner, G., Wiencke, C. Karsten, U. 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Marine Ecology Progress Series, 231, 6774.CrossRefGoogle Scholar
Hanelt, D., Melchersmann, B., Wiencke, C. Nultsch, W. 1997. Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Marine Ecology Progress Series, 149, 255266.CrossRefGoogle Scholar
Hanelt, D., Jaramillo, M.J., Nultsch, W., Senger, S. Westermeier, R. 1994. Photoinhibition as a regulative mechanism of photosynthesis in marine algae of Antarctica. Serie Cientifico Instituto Antartico Chileno, 44, 6777.Google Scholar
Heywood, R.B. Whitaker, T.M. 1984. The Antarctic marine flora. In Laws, R.M., ed. Antarctic ecology, vol. 2. London: Academic Press, 373419.Google Scholar
Hommersand, M., Moe, R.L., Amsler, C.D. Fredericq, S. 2009. Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Botanica Marina, 52, 509534.CrossRefGoogle Scholar
Hoyer, K., Karsten, U. Wiencke, C. 2002. Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Marine Biology, 141, 619627.Google Scholar
Hoyer, K., Karsten, U., Sawall, T. Wiencke, C. 2001. Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Marine Ecology Progress Series, 211, 117129.CrossRefGoogle Scholar
Huang, Y.M., Amsler, M.O., McClintock, J.B., Amsler, C.D. Baker, B.J. 2007. Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biology, 30, 14171430.CrossRefGoogle Scholar
Huang, Y.M., McClintock, J.B., Amsler, C.D., Peters, K.J. Baker, B.J. 2006. Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. Journal of Experimental Marine Biology and Ecology, 329, 5565.CrossRefGoogle Scholar
Iken, K., Quartino, M.L. Wiencke, C. 1997. Grazing by the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarctic Science, 9, 386391.CrossRefGoogle Scholar
Kain, J.M. 1989. The seasons in the subtidal. British Phycological Journal, 24, 203215.CrossRefGoogle Scholar
Karsten, U., Wiencke, C. Kirst, G.O. 1990. The ß-dimethylsulfoniumpropionate (DMSP) content of macroalgae from Antarctica and southern Chile. Botanica Marina, 33, 143146.CrossRefGoogle Scholar
Kirst, G.O. Wiencke, C. 1995. Ecophysiology of polar algae. Journal of Phycology, 31, 181199.CrossRefGoogle Scholar
Klöser, H., Quartino, M.L. Wiencke, C. 1996. Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia, 333, 117.CrossRefGoogle Scholar
Klöser, H., Ferreyra, G., Schloss, I., Mercuri, G., Laturnus, F. Curtosi, A. 1993. Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). Journal of Marine Systems, 4, 289301.CrossRefGoogle Scholar
Lüder, U.H., Knoetzel, J. Wiencke, C. 2001a. Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biology, 24, 598603.Google Scholar
Lüder, U.H., Knoetzel, J. Wiencke, C. 2001b. Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiologia Plantarum, 112, 572581.CrossRefGoogle ScholarPubMed
Lüder, U.H., Wiencke, C. Knoetzel, J. 2002. Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): a study to simulate Antarctic winter sea ice cover. Journal of Phycology, 38, 904913.CrossRefGoogle Scholar
Lüning, K. 1990. Antarctic region. In Lüning, K., ed. Seaweeds: their environment, biogeography and ecophysiology. New York: John Wiley, 245250.Google Scholar
Michler, T., Aguilera, J., Hanelt, D., Bischof, K. Wiencke, C. 2002. Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Marine Biology, 140, 11171127.Google Scholar
Müller, R., Laepple, T., Bartsch, I. Wiencke, C. 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 52, 617638.CrossRefGoogle Scholar
Nedzarek, A. Rakusa-Suscezewski, S. 2004. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Bioscience, 17, 2635.Google Scholar
Oliveira, E.C., Absher, T.M., Pellizzari, F.M. Oliveira, M.C. 2009. The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biology, 32, 16391647.CrossRefGoogle Scholar
Oren, A. Gunde-Cimerman, N. 2007. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiology Letters, 269, 110.CrossRefGoogle ScholarPubMed
Peters, K.J., Amsler, C.D., Amsler, M.O., McClintock, J.B., Dunbar, R.B. Baker, B.J. 2005. A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia, 44, 453463.CrossRefGoogle Scholar
Poppe, F., Hanelt, D. Wiencke, C. 2002. Changes in ultrastructure, photosynthetic activity and pigments in the Antarctic red alga Palmaria decipiens during acclimation to UV radiation. Botanica Marina, 45, 253261.CrossRefGoogle Scholar
Poppe, F., Schmidt, R.A., Hanelt, D. Wiencke, C. 2003. Effects of UV radiation on the ultrastructure of several red algae. Phycological Research, 51, 1119.CrossRefGoogle Scholar
Post, A. Larkum, A.W.D. 1993. UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquatic Botany, 45, 231243.CrossRefGoogle Scholar
Quartino, M.L. de Zaixso, A.L.B. 2008. Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biology, 31, 281294.CrossRefGoogle Scholar
Quartino, M.L., Zaixso, H.E. de Zaixso, A.L.B. 2005. Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Botanica Marina, 48, 187197.CrossRefGoogle Scholar
Quartino, M.L., Klöser, H., Schloss, I.R. Wiencke, C. 2001. Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biology, 24, 349355.CrossRefGoogle Scholar
Ricker, R.W. 1987. Taxonomy and biogeography of Macquarie Island seaweeds. London: British Museum Press, 218225.Google Scholar
Rintoul, S.R., Hughes, C. Olbers, D. 2001. The Antarctic circumpolar current system. In Siedler, G., Church, J. & Gould, J., eds. Ocean circulation and climate-observing and modelling the global ocean. London: Academic Press, 271302.CrossRefGoogle Scholar
Shick, J.M. Dunlap, W.C. 2002. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annual Review of Physiology, 64, 223262.CrossRefGoogle ScholarPubMed
Schloss, I.R., Ferreyra, G.A., González, O., Atencio, A., Fuentes, V.L., Tosonotto, G., Mercuri, G., Sahade, R., Tatián, M. Abele, D. 2008. Long-term hydrographic conditions and climate trends in Potter Cove. Berichte zur Polarforschung, 571, 382390.Google Scholar
Thomas, D.N. Wiencke, C. 1991. Photosynthesis, dark respiration and light independent carbon fixation of endemic Antarctic macroalgae. Polar Biology, 11, 329337.CrossRefGoogle Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A. Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.CrossRefGoogle Scholar
Van den Hoek, C., Mann, D.G. Jahns, H.M. 1995. Algae: an introduction to phycology. Cambridge: Cambridge University Press, 79 pp.Google Scholar
Van der Meer, J.P. Todd, E.R. 1980. The life history of Palmaria palmata in culture: a new type for the Rhodophyta. Canadian Journal of Botany, 58, 12501256.CrossRefGoogle Scholar
Weykam, G. Wiencke, C. 1996. Seasonal photosynthetic performance of the endemic Antarctic red alga Palmaria decipiens (Reinsch) Ricker. Polar Biology, 16, 357361.CrossRefGoogle Scholar
Weykam, G., Thomas, D.N. Wiencke, C. 1997. Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridea cordata (Gigartinales) during and following extended periods of darkness. Phycologia, 36, 395405.CrossRefGoogle Scholar
Weykam, G., Gómez, I., Wiencke, C., Iken, K. Klöser, H. 1996. Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). Journal of Experimental Marine Biology and Ecology, 204, 122.CrossRefGoogle Scholar
Wiencke, C. 1990. Seasonality of red and green macroalgae from Antarctica - a long-term culture study under fluctuating Antarctic daylengths. Polar Biology, 10, 601607.CrossRefGoogle Scholar
Wiencke, C. 1996. Recent advances in the investigation of Antarctic macroalgae. Polar Biology, 16, 231240.CrossRefGoogle Scholar
Wiencke, C. Clayton, M.N. 2002. Antarctic seaweeds. Ruggell, Liechtenstein: Gantner Verlag KG, 239 pp.Google Scholar
Wiencke, C. Dieck, I.T. 1989. Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Marine Ecology Progress Series, 54, 189197.CrossRefGoogle Scholar
Wiencke, C. Dieck, I.T. 1990. Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Marine Ecology Progress Series, 59, 157170.CrossRefGoogle Scholar
Wiencke, C., Gómez, I. Dunton, K. 2009. Phenology and seasonal performance of polar seaweeds. Botanica Marina, 52, 585592.CrossRefGoogle Scholar
Wiencke, C., Ferreyra, G.A., Abele, D. Marenssi, S. 2008. The Antarctic ecosystem of Potter Cove, King George Island (Isla 25 de Mayo). Synopsis of research performed 1999–2006 at the Dallmann Laboratory and Jubany Station. Berichte zur Polarforschung, 571, 406 pp.Google Scholar
Wiencke, C., Bartsch, I., Bischoff, B., Peters, A.F. Breeman, A.M. 1994. Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Botanica Marina, 37, 247259.CrossRefGoogle Scholar
Wiencke, C., Rahmel, J., Karsten, U., Weykam, G. Kirst, G.O. 1993. Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Botanica Acta, 106, 7887.CrossRefGoogle Scholar
Wiencke, C., Clayton, M.N., Gómez, I., Iken, K., Lüder, U.H., Amsler, C.D., Karsten, U., Hanelt, D., Bischof, K. Dunton, K. 2007. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Reviews in Environmental Science and Biotechnology, 6, 95126.CrossRefGoogle Scholar
Wulff, A., Iken, K., Quartino, M.L., Al-Handal, A., Wiencke, C. Clayton, M.N. 2009. Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Botanica Marina, 52, 491509.CrossRefGoogle Scholar
Zacher, K. Campana, G.L. 2008. UV and grazing effects on an intertidal and subtidal algal assemblage: a comparative study. Berichte zur Polarforschung, 571, 287295.Google Scholar
Zacher, K., Rautenberger, R., Hanelt, D., Wulff, A. Wiencke, C. 2009. The abiotic environment of polar marine benthic algae. Botanica Marina, 52, 483490.CrossRefGoogle Scholar
Zacher, K., Wulff, A., Molis, M., Hanelt, D. Wiencke, C. 2007. Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biology, 13, 12011215.CrossRefGoogle Scholar
Zaneveld, J.S. 1966. Vertical zonation of Antarctic and sub-Antarctic benthic marine algae. Antarctic Journal of the United States, 1(5), 211213.Google Scholar
Zemke-White, W.L. Ohno, M. 1999. World seaweed utilization: an end-of-century summary. Journal of Applied Phycology, 11, 369376.CrossRefGoogle Scholar
Zielinski, K. 1981. Benthic macroalgae of Admiralty Bay (King George Island, South Shetlands, Antarctica). Polish Polar Research, 2, 7194.Google Scholar
Zielinski, K. 1990. Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). Polish Polar Research, 11, 95131.Google Scholar