Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T23:26:43.018Z Has data issue: false hasContentIssue false

Antarctic erosion history reconstructed by Terre Adélie moraine geochronology

Published online by Cambridge University Press:  08 July 2020

Encelyn Voisine
Affiliation:
EDYTEM, Université de Savoie Mont-Blanc - CNRS, Le Bourget du Lac, France Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Yann Rolland*
Affiliation:
EDYTEM, Université de Savoie Mont-Blanc - CNRS, Le Bourget du Lac, France Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Matthias Bernet
Affiliation:
Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Julien Carcaillet
Affiliation:
Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Guillaume Duclaux
Affiliation:
Université Côte d'Azur, CNRS, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, France
Jérôme Bascou
Affiliation:
Université de Lyon, Université Jean Monnet, Laboratoire Magmas et Volcans, Saint-Etienne, France
Christian Sue
Affiliation:
Chrono-environnement, Université de Bourgogne–Franche-Comté, Besançon, France
Mélanie Balvay
Affiliation:
Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
René-Pierre Ménot
Affiliation:
Université de Lyon, Université Jean Monnet, Laboratoire Magmas et Volcans, Saint-Etienne, France

Abstract

We report apatite fission-track and 10Be terrestrial cosmogenic nuclide (TCN) dating of 14 moraine boulders originating from inland Terre Adélie, East Antarctica. These data show cooling of the Proterozoic Terre Adélie craton at < ~120°C between 350 and 300 Ma, suggesting > 4 km temperate glacial erosion during the Late Palaeozoic Ice Age, followed by nearly null Mesozoic erosion and low glacial erosion (< 2 km) in the Cenozoic. Based on glacial flux maps, the origin of the boulders may be located ~400 km upstream. Preliminary TCN (10Be) datings of moraine boulders cluster within the last 30 ka. Cosmogenic ages from the Lacroix Nunatak suggest a main deglaciation after the Younger Dryas at c. 10 ka, while those of Cap Prud'homme mostly cluster at 0.6 ka, in agreement with an exhumation of boulders during the Little Ice Age.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, A.R.A., Roberts, J.L., van Ommen, T.D., Young, D.A., Golledge, N.R., Greenbaum, J.S., et al. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533, 385389.CrossRefGoogle ScholarPubMed
Arne, D.C. 1994. Phanerozoic exhumation history of northern Prince Charles Mountains (East Antarctica). Antarctic Science, 6, 6984.CrossRefGoogle Scholar
Balco, G., Todd, C., Goehring, B.M., Moening-Swanson, I. & Nichols, K. 2019. Glacial geology and cosmogenic-nuclide exposure ages from the Tucker Glacier-Whitehall Glacier confluence, northern Victoria Land, Antarctica. American Journal of Science, 319, 255286.CrossRefGoogle Scholar
Balestrieri, M.L., Olivetti, V., Rossetti, F., Gautheron, C., Cattò, S. & Zattin, M. 2020. Topography, structural and exhumation history of the Admiralty Mountains region, northern Victoria Land, Antarctica. Geoscience Frontiers, 10.1016/j.gsf.2020.01.018.CrossRefGoogle Scholar
Beaman, R.J., O'Brien, P.E., Post, A.L. & de Santis, L. 2011. A new high-resolution bathymetry model for the Terre Adélie and George V continental margin, East Antarctica. Antarctic Science, 23, 95103.CrossRefGoogle Scholar
Bentley, M.J., Cofaigh, C.O., Anderson, J.B., Conway, H., Davies, B., Graham, A.G., et al. 2014. A community-based geological reconstruction of Antarctic ice sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 100, 19.CrossRefGoogle Scholar
Bracegirdle, T.J., Colleoni, F., Abram, N.J., Bertler, N.A., Dixon, D.A., England, M., et al. 2019. Back to the future: using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate. Geosciences, 9, 255.CrossRefGoogle Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 192199.CrossRefGoogle Scholar
Çiner, A., Yildirim, C., Sarikaya, M.A., Seong, Y.B. & Yu, B.Y. 2019. Cosmogenic 10Be exposure dating of glacial erratics on Horseshoe Island in western Antarctic Peninsula confirms rapid deglaciation in the Early Holocene. Antarctic Science, 31, 319331.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., et al. 2009. The Last Glacial Maximum. Science, 325, 710714.CrossRefGoogle ScholarPubMed
Cox, S.E., Thomson, S.N., Reiners, P.W., Hemming, S.R. & van de Flierdt, T. 2010. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica. Geophysical Research Letters, 37, L22307.CrossRefGoogle Scholar
Crosta, X., Debret, M., Denis, D., Courty, M.A. & Ther, O. 2007. Holocene long-and short-term climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems, 8, 10.1029/2007GC001718.CrossRefGoogle Scholar
D'Arcy, M., Schildgen, T.F., Strecker, M.R., Wittmann, H., Duesing, W., Mey, J., et al. 2019. Timing of past glaciation at the Sierra de Aconquija, northwestern Argentina, and throughout the Central Andes. Quaternary Science Reviews, 204, 3757.CrossRefGoogle Scholar
Darnault, R., Rolland, Y., Braucher, R., Bourlès, D., Revel, M., Sanchez, G. & Bouissou, S. 2012. Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale: impact on mountain geomorphology. Quaternary Science Reviews, 31, 127142.CrossRefGoogle Scholar
Domack, E.W., Jull, A.T., Anderson, J.B., Linick, T.W. & Williams, C.R. 1989. Application of tandem accelerator mass-spectrometer dating to late Pleistocene-Holocene sediments of the East Antarctic continental shelf. Quaternary Research, 31, 277287.CrossRefGoogle Scholar
Duclaux, G., Rolland, Y., Ruffet, G., Ménot, R.P., Guillot, S., Peucat, J.J., et al. 2008. Superimposed Neoarchaen and Paleoproterozoic tectonics in the Terre Adélie craton (East Antarctica): evidence from Th-U-Pb ages on monazite and 40Ar/39Ar ages. Precambrian Research, 167, 316338.CrossRefGoogle Scholar
Ehlers, T.A., Chaudhri, T., Kumar, S., Fuller, C.W., Willett, S.D., Ketcham, R.A., et al. 2005. Computational tools for low-temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58, 589622.CrossRefGoogle Scholar
Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388392.CrossRefGoogle ScholarPubMed
Fitzgerald, P.G. 1994. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics, 13, 818836.CrossRefGoogle Scholar
Genthon, C., Lardeux, P. & Krinner, G. 2007. The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica. Journal of Glaciology, 53, 635645.CrossRefGoogle Scholar
Godard, G., Reynes, J., Bascou, J., Ménot, R.P. & Palmeri, R. 2017. First rocks sampled in Antarctica (1840): insights into the landing area and the Terre Adélie craton. Comptes Rendus Geoscience, 349(1), 1221.CrossRefGoogle Scholar
Golledge, N.R., Fogwill, C.J., Mackintosh, A.N. & Buckley, K.M. 2012. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences of the United States of America, 109, 1605216056.CrossRefGoogle ScholarPubMed
Heyman, J., Stroeven, A.P., Harbor, J.M. & Caffee, M.W. 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters, 302, 7180.CrossRefGoogle Scholar
Isbell, J.L., Henry, L.C., Gulbranson, E.L., Limarino, C.O., Fraiser, M.L., Koch, Z.J., et al. 2012. Glacial paradoxes during the Late Paleozoic Ice Age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22, 119.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., et al. 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 187191.CrossRefGoogle Scholar
Lamarque, G., Barruol, G., Fontaine, F.R., Bascou, J. & Ménot, R.P. 2015. Crustal and mantle structure beneath the Terre Adelie craton, East Antarctica: insights from receiver function and seismic anisotropy measurements. Geophysical Journal International, 200, 809823.CrossRefGoogle Scholar
Lamarque, G., Bascou, J., Ménot, R.P., Paquette, J.L., Couzinié, S., Rolland, Y. & Cottin, J.Y. 2018. Ediacaran to lower Cambrian basement in eastern George V Land (Antarctica): evidence from U-Pb dating of gneiss xenoliths and implications for the South Australia-East Antarctica connection. Lithos, 318, 219229.CrossRefGoogle Scholar
Li, F., Ma, C., Zhang, S., Lei, J., Hao, W., Zhang, Q. & Li, W. 2020. Evaluation of the glacial isostatic adjustment (GIA) models for Antarctica based on GPS vertical velocities. Science China Earth Sciences, 63, 575590.CrossRefGoogle Scholar
Lifton, N. 2016. Implications of two Holocene time dependent geomagnetic models for cosmogenic nuclide production rate scaling. Earth and Planetary Sciences Letters, 433, 257268.CrossRefGoogle Scholar
Lisker, F. & Olesch, M. 2003. Long-term landscape evolution of George V Land as indicated by fission track data. Terra Antartica, 10, 249256.Google Scholar
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J. & Fanning, P.C. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.CrossRefGoogle Scholar
Maritati, A., Aitken, A.R.A., Young, D.A., Roberts, J.L., Blankenship, D.D. & Siegert, M.J. 2016. The tectonic development and erosion of the Knox subglacial sedimentary basin, East Antarctica. Geophysical Research Letters, 43, 1072810737.CrossRefGoogle Scholar
Montañez, I.P., McElwain, J.C., Poulsen, C.J., White, J.D., DiMichele, W.A., Wilson, J.P. & Hren, M.T. 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Paleozoic glacial-interglacial cycles. Nature Geoscience, 9, 824828.CrossRefGoogle Scholar
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., et al. 2019. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13, 132137.CrossRefGoogle Scholar
Naumenko-Dèzes, M.O., Rolland, Y., Lamarque, G., Duclaux, G., Gallet, S., Bascou, J. & Ménot, R.P. 2020. Petrochronology of the Terre Adélie craton (East Antarctica) evidences a long-lasting Proterozoic (1.7–1.5 Ga) tectono-metamorphic evolution - insights for the connections with the Gawler craton and Laurentia. Gondwana Research, 81, 2157.CrossRefGoogle Scholar
Paxman, G.J., Jamieson, S.S., Hochmuth, K., Gohl, K., Bentley, M.J., Leitchenkov, G. & Ferraccioli, F. 2019. Reconstructions of Antarctic topography since the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, 109346.CrossRefGoogle Scholar
Peucat, J.J., Capdevila, R., Fanning, C.M., Ménot, R.P., Pécora, L. & Testut, L. 2002. 1.60 Ga felsic volcanic blocks in the moraines of the Terre Adélie craton, Antarctica: comparisons with the Gawler Range Volcanics, South Australia. Australian Journal of Earth Sciences, 49, 831845.CrossRefGoogle Scholar
Putkonen, J. & Swanson, T. 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research, 59, 255261.CrossRefGoogle Scholar
Qie, W., Algeo, T.J., Luo, G. & Herrmann, A. 2019. Global events of the Late Paleozoic (Early Devonian to Middle Permian): a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109259.CrossRefGoogle Scholar
Rignot, E., Mouginot, J. & Scheuchl, B. 2011. Ice flow of the Antarctic ice sheet. Science, 333, 14271430.CrossRefGoogle ScholarPubMed
Ritz, C., Edwards, T.L., Durand, G., Payne, A.J., Peyaud, V. & Hindmarsh, R.C. 2015. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528, 115118.CrossRefGoogle ScholarPubMed
Rolland, Y., Bernet, M., van der Beek, P., Gautheron, C., Duclaux, G., Bascou, J., et al. 2019. Late Paleozoic Ice Age glaciers shaped East Antarctica landscape. Earth and Planetary Science Letters, 506, 123133.CrossRefGoogle Scholar
Rygel, M.C., Fielding, C.R., Frank, T.D. & Birgenheier, L.P. 2008. The magnitude of Late Palaeozoic glacioeustatic fluctuations: a synthesis. Journal of Sedimentary Research, 78, 500511.CrossRefGoogle Scholar
Steig, E.J., Morse, D.L., Waddington, E.D., Stuiver, M., Grootes, P.M., Mayewski, P.A., et al. 2000. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler, 82, 213235.CrossRefGoogle Scholar
Thomson, S.N., Reiners, P.W., Hemming, S.R. & Gehrels, G.E. 2013. The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nature Geoscience, 6, 203207.CrossRefGoogle Scholar
Tison, J.L., Petit, J.R., Barnola, J.M. & Mahaney, W.C. 1993. Debris entrainment at the icebedrock interface in sub-freezing temperature conditions (Terre Adelie, Antarctica). Journal of Glaciology, 39, 303315.CrossRefGoogle Scholar
Torsvik, T.H., Müller, R.D., van der Voo, R., Steinberger, B. & Gaina, C. 2008. Global plate motion frames: toward a unified model. Review of Geophysics, 46, 1–44.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Milne, G.A., Sabbe, K. & Vyverman, W. 2005. Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quaternary Research, 63, 4552.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., Cremer, H., Emslie, S.D., Gibson, J., et al. 2011. Postglacial regional climate variability along the East Antarctic coastal margin evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104, 199212.CrossRefGoogle Scholar
Žebre, M., Sarıkaya, M.A., Stepišnik, U., Yıldırım, C. & Çiner, A. 2019. First 36Cl cosmogenic moraine geochronology of the Dinaric mountain karst: Velež and Crvanj Mountains of Bosnia and Herzegovina. Quaternary Science Reviews, 208, 5475.CrossRefGoogle Scholar
Zwartz, D., Bird, M., Stone, J. & Lambeck, K. 1998. Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth and Planetary Science Letters, 155, 131145.CrossRefGoogle Scholar
Supplementary material: PDF

Voisine et al. supplementary material

Figures S1-S2

Download Voisine et al. supplementary material(PDF)
PDF 514.2 KB