Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:25:23.590Z Has data issue: false hasContentIssue false

What factors affect the alpha diversity of microarthropods (Acari, Collembola) on King George Island (Antarctica)?

Published online by Cambridge University Press:  18 September 2023

Dariusz J. Gwiazdowicz*
Affiliation:
Poznan University of Life Sciences, Faculty of Forestry and Wood Technology, Wojska Polskiego 71c, 60-625 Poznan, Poland
Wojciech Niedbała
Affiliation:
Adam Mickiewicz University, Natural History Collections and Department of Animal Taxonomy and Ecology, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
Dariusz Skarżyński
Affiliation:
University of Wrocław, Faculty of Biological Sciences, Department of Invertebrate Biology, Evolution and Conservation, Przybyszewskiego 65, 51-148 Wrocław, Poland
Bogna Zawieja
Affiliation:
Poznan University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637 Poznań, Poland

Abstract

The natural environment in polar regions is being transformed, glaciers are melting and succession of microarthropods is being observed. We tested the hypothesis that habitat conditions, determined by the locality and character of the vegetation cover, play a significant role in such succession. The material for analysis was collected from four localities on King George Island in Antarctica: Arctowski Station, Demay Refuge, Republica del Ecuador Refuge and Comandante Ferraz Antarctic Station. From each locality, 30 samples (grasses, lichens, mosses) were collected and 310 508 microarthropod specimens were recorded, with 17 species (1 Mesostigmata, 9 Oribatida, 7 Collembola species) identified. Based on statistical analyses, it was shown that microarthropod communities differ both in individual localities and selected microhabitats. The greatest number of species was reported in the grass turf, while the greatest number of individuals was recorded in mosses. The dominant species at all the localities was Cryptopygus antarcticus antarcticus (299 203 individuals), which was found in greatest numbers in grasses and mosses. In turn, Tullbergia mixta (2485 individuals) was the dominant species of the lichens. Moreover, the following species, new to King George Island, were also identified: Flagrosuctobelba subcornigera, Liochthonius australis, Membranoppia ventrolaminata and Quadroppia monstruosa belonging to Oribatida as well as Archisotoma brucei belonging to Collembola.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., et al. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 10.1016/j.soilbio.2006.04.03010.1016/j.soilbio.2006.04.030CrossRefGoogle Scholar
Anderson, M.J. 2017. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat07841Google Scholar
Benoit, J.B., Elnitsky, M.A., Schulte, G.G., Lee, R.E. Jr & Denlinger, D.L. 2009. Antarctic collembolans use chemical signals to promote aggregation and egg laying. Journal of Insect Behavior, 22, 121133.10.1007/s10905-008-9159-7CrossRefGoogle Scholar
Block, W., Harrisson, P.M. & Vannier, G. 1990. A comparative study of patterns of water loss from two Antarctic springtails (Insecta, Collembola). Journal of Insect Physiology, 36, 181187.10.1016/0022-1910(90)90120-5CrossRefGoogle Scholar
Bokhorst, S., Convey, P. & Aerts, R. 2019. Nitrogen inputs by marine vertebrates drive abundance and richness in antarctic terrestrial ecosystems. Current Biology, 29, 17211727.10.1016/j.cub.2019.04.038CrossRefGoogle ScholarPubMed
Bokhorst, S., Ronfort, C., Huiskes, A, Convey, P. & Aerts, R. 2007. Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biology, 30, 10.1007/s00300-007-0256-4.10.1007/s00300-007-0256-4CrossRefGoogle Scholar
Broady, P.A. 1979. Feeding studies on the Collembolan Cryptopygus antarcticus Willem at Signy Island, South Orkney Islands. British Antarctic Survey Bulletin, 48, 3746.Google Scholar
Buryn, R. & Usher, M.B. 1986. A morphometric study of the mite, Oppia loxolineata, in the Maritime Antarctic. British Antarctic Survey Bulletin, 73, 4750.Google Scholar
Carapelli, A., Greenslade, P., Nardi, F., Leo, C., Convey, P., Frati, F. & Fanciulli, P.P. 2020. Evidence for cryptic diversity in the ‘pan-Antarctic’ springtail Friesea antarctica and the description of two new species. Insects, 11, 10.3390/insects11030141.CrossRefGoogle ScholarPubMed
Convey, P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology, 34, 16291641.10.1007/s00300-011-1068-0CrossRefGoogle Scholar
Convey, P. & Quintana, R.D. 1997. The terrestrial arthropod fauna of Cierva Point SSSI, Danco Coast, northern Antarctic Peninsula. European Journal of Soil Biology, 33, 1229.Google Scholar
Convey, P. & Smith, R.I.L. 1997. The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island, Maritime Antarctic. Antarctic Science, 9, 1226.10.1017/S0954102097000035CrossRefGoogle Scholar
Convey, P., Greenslade, P. & Pugh, P.J.A. 2000. The terrestrial micro-arthropod fauna of the South Sandwich Islands. Journal of Natural History, 34, 597609.CrossRefGoogle Scholar
Coulson, S.J., Convey, P., Aakra, K., Aarvik, L., Ávila-Jiménez, M.L., Babenko, A., et al. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biology and Biochemistry, 68, 10.1016/j.soilbio.2013.10.006.10.1016/j.soilbio.2013.10.006CrossRefGoogle Scholar
Covarrubias, R. 1968. Some observations on Antarctic Oribatei (Acarina) Liochthonius australis sp. n., and two Oppia spp. Acarologia, 10, 313356.Google Scholar
Davies, K.F., Greenslade, P. & Melbourne, B.A. 1997. The invertebrates of sub-Antarctic Bishop Island. Polar Biology, 17, 455458.10.1007/s003000050140CrossRefGoogle Scholar
Day, T.A., Ruhland, C.T., Strauss, S.L., Park, J.H., Krieg, M.L., Krna, M.A. & Bryant, D.M. 2009. Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Global Change Biology, 15, 10.1111/j.1365-2486.2009.01919.x.10.1111/j.1365-2486.2009.01919.xCrossRefGoogle Scholar
Deharveng, L. 1981. Collemboles des Iles Subantarctiques de ĺOcéan Indien mission J. Travé 1972–1973. Comité National Français des Recherches Antartiques, 48, 33108.Google Scholar
Dufrêne, M. & Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345366.Google Scholar
Enríquez, N., Tejedo, P., Benayas, J., Albertos, B. & Luciáñez, M.J. 2018. Collembola of Barrientos Island, Antarctica: first census and assessment of environmental factors determining springtail distribution. Polar Biology, 41, 10.1007/s00300-017-2230-0.10.1007/s00300-017-2230-0CrossRefGoogle Scholar
Fanciulli, P.P., Leo, C., Convey, P., Frati, F. & Carapelli, A. 2018. Redescription and neotype designation of the Antarctic springtail Folsomotoma octooculata (Collembola: Isotomidae). Zootaxa, 4392, 10.11646/zootaxa.4392.2.11.CrossRefGoogle ScholarPubMed
Greenslade, P. 1995. Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Polskie Pismo Entomologiczne, 64, 305319.Google Scholar
Greenslade, P. 2010. Collembola fauna of the South Shetland Islands revisited. Antarctic Science, 22, 10.1017/S095410200999071X.10.1017/S095410200999071XCrossRefGoogle Scholar
Greenslade, P. 2018. An Antarctic biogeographical anomaly resolved: the true identity of a widespread species of Collembola. Polar Biology, 41, 10.1007/s00300-018-2261-1.10.1007/s00300-018-2261-1CrossRefGoogle Scholar
Greenslade, P., Potapov, M., Russell, D. & Convey, P. 2012. Global Collembola on Deception Island. Journal of Insect Science, 12, 10.1673/031.012.11101.10.1673/031.012.11101CrossRefGoogle ScholarPubMed
Gryziak, G. 2009. Colonization by mites of glacier-free areas in King George Island, Antarctica. Pesquisa Agropecuária Brasileira, 44, 891895.CrossRefGoogle Scholar
Gulvik, M.E. 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology, 55, 415440.Google Scholar
Gwiazdowicz, D.J., Niedbała, W., Skarżyński, D. & Zawieja, B. 2022. Occurrence of mites (Acari) and springtails (Collembola) in bird nests on King George Island (South Shetland Islands, Antarctica). Polar Biology, 45, 10.1007/s00300-022-03052-1.10.1007/s00300-022-03052-1CrossRefGoogle Scholar
Gwiazdowicz, D.J., Zawieja, B., Olejniczak, I., Skubała, P., Gdula, A.K. & Coulson, S.J. 2020. Changing microarthropod communities in front of a receding glacier in the high Arctic. Insects, 11, 10.3390/insects11040226.10.3390/insects11040226CrossRefGoogle ScholarPubMed
Heink, U. & Kowarik, I. 2010. What criteria should be used to select biodiversity indicators? Biodiversity Conservation, 19, 37693797.10.1007/s10531-010-9926-6CrossRefGoogle Scholar
Hunter, P.E. 1967. Mesostigmata: Rhodacaridae, Laelapidae (Mesostigmatic mites). Antarctic Research Study, 10, 3539.Google Scholar
Jumeau, P.J.A.M. & Usher, M.B. 1987. The Antarctic predatory mite Gamasellus racovitzai (Trouessart) (Mesostigmata): a morphometric study of two subspecies. Acarologia, 28, 1526.Google Scholar
Marshall, D.J., Gremmen, N.J.M., Coetzee, L., O'Connor, B.M., Pugh, P.J.A., Theron, P.D. & Ueckermann, E.A. 1999. New records of Acari from the sub-Antarctic Prince Edward Island. Polar Biology, 21, 8489.CrossRefGoogle Scholar
Moreau, M., Laffly, D., Joly, D. & Brossard, T. 2005. Analysis of plant colonization on an Arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach. Remote Sensing of Environment, 99, 244253.10.1016/j.rse.2005.03.017CrossRefGoogle Scholar
Niedbała, W. 1986. Several species of moss-mites (Acari, Oribatida) from the Antarctic coastal zone. Polish Polar Research, 7, 1926.Google Scholar
Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131144.CrossRefGoogle Scholar
Potts, L.J., Gantz, J.D., Kawarasaki, Y., Philip, B.N., Gonthier, D.J., Law, A.D., et al. 2020. Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect. Oecologia, 194, 529539.CrossRefGoogle ScholarPubMed
Pugh, P.J.A. 1993. A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic islands and the Southern Ocean. Journal of Natural History, 27, 323421.CrossRefGoogle Scholar
Richard, K.J., Convey, P. & Block, W. 1994. The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands. Polar Biology, 14, 371379.CrossRefGoogle Scholar
Russell, D.J., Hohberg, K., Potapov, M., Bruckner, A., Otte, V. & Christian, A. 2014. Native terrestrial invertebrate fauna from the northern Antarctic Peninsula: new records, state of current knowledge and ecological preferences. Summary of a German federal study. Soil Organisms, 86, 188.Google Scholar
Schulte, G.G., Elnitsky, M.A., Benoit, J.B., Denlinger, D.L. & Lee, R.E. 2008. Extremely large aggregations of collembolan eggs on Humble Island, Antarctica: a response to early seasonal warming? Polar Biology, 31, 889892.10.1007/s00300-008-0445-9CrossRefGoogle Scholar
Seniczak, A., Seniczak, S., Schwarzfeld, M.D., Coulson, S.J. & Gwiazdowicz, D.J. 2020. Diversity and distribution of mites (Acari: Ixodida, Mesostigmata, Trombidiformes, Sarcoptiformes) in the Svalbard Archipelago. Diversity, 12, 10.3390/d12090323.10.3390/d12090323CrossRefGoogle Scholar
Shannon, C.E. & Weaver, W. 1949. The mathematical theory of communication. Champaign, IL: University of Illinois Press, 131 pp.Google Scholar
Sinclair, B.J., Scott, M.B., Klok, C.J., Terblanche, J.S., Marshall, D.J., Reyers, B. & Chown, S.L. 2006. Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica. Antarctic Science, 18, 10.1017/S0954102006000356.10.1017/S0954102006000356CrossRefGoogle Scholar
Starý, J. & Block, W. 1998. Distribution and biogeography of oribatid mites (Acari: Oribatida) in Antarctica, the sub-Antarctic islands and nearby land areas. Journal of Natural History, 32, 861894.CrossRefGoogle Scholar
Thioulouse, J., Dray, S., Dufour, A.B., Siberchicot, A., Jombart, T. & Pavoine, S. 2018. Multivariate analysis of ecological data with ade4. New York: Springer, 329 pp.Google Scholar
Tilbrook, P.J. 1967. Arthropod ecology in the Maritime Antarctic. Antarctic Research Series, 10, 10.1029/AR010p0331.Google Scholar
Turner, J., Bindschadler, R.A., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., et al., eds. 2009. Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research, 526 pp.Google Scholar
Usher, M.B. & Edwards, M. 1984. The terrestrial arthropods of the grass sward of Lynch Island, a specially protected area in Antarctica. Oecologia, 63, 183184.CrossRefGoogle ScholarPubMed
Usher, M.B. & Edwards, M. 1986. The selection of conservation areas in Antarctica: an example using the arthropod fauna of Antarctic islands. Environmental Conservation, 13, 115122.10.1017/S0376892900036705CrossRefGoogle Scholar
Wallwork, J.A. 1965. The Cryptostigmata (Acari) of Antarctica with special references to the Antarctic Peninsula and South Shetland Islands. Pacific Insects, 7, 453468.Google Scholar
Wallwork, J.A. 1967. Cryptostigmata (Oribatid mites). Antarctic Research Series, 10, 105122.Google Scholar
Wallwork, J.A. 1973. Zoogeography of some terrestrial micro-Arthropoda in Antarctida. Biological Reviews, 48, 233259.10.1111/j.1469-185X.1973.tb00981.xCrossRefGoogle Scholar