Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:59:10.941Z Has data issue: false hasContentIssue false

UV radiation - a threat to Antarctic benthic marine diatoms?

Published online by Cambridge University Press:  12 October 2007

Angela Wulff*
Affiliation:
Department of Marine Ecology, Göteborg University, PO Box 461, SE-405 30 Göteborg, Sweden
Katharina Zacher
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
Dieter Hanelt
Affiliation:
Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
Adil Al-Handal
Affiliation:
Department of Marine Ecology, Göteborg University, PO Box 461, SE-405 30 Göteborg, Sweden
Christian Wiencke
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany

Abstract

This investigation was motivated by the lack of ultraviolet radiation (UVR, 280–400 nm) studies on Antarctic benthic marine microalgae. The objective was to estimate the impact of UV-B (280–315 nm) and UV-A (315–400 nm), on photosynthetic efficiency, species composition, cell density and specific growth rate in a semi-natural soft-bottom diatom community. In both experiments, cell density increased over time. The most frequently observed species were Navicula cancellata, Cylindrotheca closterium, Nitzschia spp., and Petroneis plagiostoma. For both experiments, a shift in species composition and a decreased photosystem II (PSII) maximum efficiency (Fv/Fm) over time was observed, irrespective of treatment. UVR significantly reduced Fv/Fm on days 3 and 10 (Expt 1), disappearing on the last sampling date. A similar trend was found in Expt 2. A significant UV effect on cell density was observed in Expt 1 (day 10) but not in Expt 2. No treatment effects on species composition or specific growth rate were found. Thus, the UV effects were transient (photosynthetic efficiency and cell density) and the growth of the benthic diatoms was generally unaffected. Overall, according to our results, UVR does not seem to be a threat to benthic marine Antarctic diatoms.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, I.Y., Chung, H., Kang, J.S. &Kang, S.H. 1994. Preliminary studies on the ecology of neritic marine diatoms in Maxwell Bay, King George Island, Antarctica. Korean Journal of Phycology, 9, 3745.Google Scholar
Arsalane, W., Rousseau, B. & Duval, J.C. 1994. Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom - competition between photoprotection and photoinhibition. Photochemistry and Photobiology, 60, 237243.Google Scholar
Barranguet, C. & Kromkamp, J. 2000. Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Marine Ecology Progress Series, 204, 3952.Google Scholar
Bischof, K., Hanelt, D., Tüg, H., Karsten, U., Brouwer, P.E.M. & Wiencke, C. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal water (Spitsbergen, Norway). Polar Biology, 20, 388395.CrossRefGoogle Scholar
Bischof, K., Hanelt, D. & Wiencke, C. 1999. Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biology, 1, 435444.CrossRefGoogle Scholar
Blanchard, G.F. & Cariou-Le Gall, V. 1994. Photosynthetic characteristics of microphytobenthos in Marennes-Oleron Bay, France: preliminary results. Journal of Experimental and Marine Biology Ecology. 182, 114.Google Scholar
Bothwell, M.L., Sherbot, D.M.J. & Pollock, C.M. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science, 265, 97100.Google Scholar
Buma, A.G.J., de Boer, M.K. & Boelen, P. 2001. Depth distribution of DNA damage on Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. Journal of Phycology, 37, 200208.Google Scholar
Franklin, L. & Forster, R.M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. European Journal of Phycology, 32, 207232.Google Scholar
Geider, R.J., LaRoche, J., Greene, R.M. & Olaizola, M. 1993. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. Journal of Phycology, 29, 755766.CrossRefGoogle Scholar
Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W.L. & Chanley, M.H., eds. Culture of marine invertebrate animals. New York: Plenum Press, 2960.Google Scholar
Hendey, N.I. 1952. Littoral diatoms of Chichester harbour with special reference to fouling. Journal of the Royal Microscopical Society, 71, 186.CrossRefGoogle Scholar
Hendey, N.I. 1964. An introductory account of the smaller algae of the British coastal waters, 5. Bacillariophyceae (Diatoms). Fishery Investigations Series 4. London: HMSO, 317 pp.Google Scholar
Hernando, M., Carreto, J.I., Carignan, M.O., Ferreyra, G.A. & Gross, C. 2002. Effects of solar radiation on growth and mycosporine-like amino acids content in Thalassiosira sp., an Antarctic diatom. Polar Biology, 25, 1220.Google Scholar
Hustedt, F. 1961–66. Die Kieselalgen Deutschlands, Österreich und der Schweiz unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. In Rabenhorst, L., ed. Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, vol. 7, part 2. Leipzig: Akademische Verlagsgesellschaft, 845 pp.Google Scholar
Jassby, A.D. & Platt, T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21, 540547.CrossRefGoogle Scholar
Karentz, D., Cleaver, J.E. & Mitchell, D.L. 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. Journal of Phycology, 27, 326341.Google Scholar
Karentz, D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarctic Research Series, 62, 93110.Google Scholar
Krammer, K. & Lange-Bertalot, H. 1986–91. Bacillariophyceae. Parts 1–4. In Ettl, H., Gerloff, F., Heynig, H. & Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa. Stuttgart: Fischer, 2486 pp.Google Scholar
Kruskopf, M. & Flynn, K. 2005. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist, 169, 525536.CrossRefGoogle Scholar
Nelson, J., Eckman, J., Robertson, C., Marinelli, R. & Jahnke, R. 1999. Benthic microalgal biomass and irradiance at the sea floor on the continental shelf of the South Atlantic Bight: spatial and temporal variability and storm effects. Continental Shelf Research, 19, 477505.CrossRefGoogle Scholar
Richter, A., Wuttke, S. & Zacher, K. In press. Two years of UV measurements at the Dallmann Laboratory/Jubany Base. In The Potter Cove coastal ecosystem, Antarctica: synopsis of research performed 1999–2006 at the Dallmann-Laboratory and Jubany Station, King George Island. Berichte Polarforschung und Meeresforschung, Bremerhaven.Google Scholar
Round, F.E., Crawford, R.M. & Mann, D.G. 1990. The diatoms: biology and morphology of the genera. Cambridge: Cambridge University Press, 747 pp.Google Scholar
Roux, R., Gosselin, M., Desrosiers, G. & Nozais, C. 2002. Effects of reduced UV radiation on a microbenthic community during a microcosm experiment. Marine Ecology Progress Series, 225, 2943.Google Scholar
Schloss, I.R., Ferreyra, G.A. & Curtosi, C.U.R. 1998. Phytoplankton primary production in Potter Cove, King George Island. Reports on Polar Research, 299, 6773.Google Scholar
Sundbäck, K., Odmark, S., Wulff, A., Nilsson, C. & Wängberg, S.Å. 1997. Effects of enhanced UVB radiation on a marine benthic diatom mat. Marine Biology, 128, 171179.Google Scholar
Underwood, G.J.C. & Kromkamp, J. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research, 29, 93153.Google Scholar
Underwood, G.J.C., Nilsson, C., Sundbäck, K. & Wulff, A. 1999. Short-term effects of UVB radiation on chlorophyll fluorescence, biomass, pigments, and carbohydrate fractions in a benthic diatom mat. Journal of Phycology, 35, 656666.CrossRefGoogle Scholar
Villafañe, V., Sundbäck, K., Figueroa, F. & Helbling, W. 2003. Photosynthesis in the aquatic environment as affected by UVR. In Helbling, W. & Zagarese, H., eds. UV effects in aquatic organisms and ecosystems. Cambridge: Royal Society of Chemistry, 557 pp.Google Scholar
Vinebrooke, R.D. & Leavitt, P.R. 1999. Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology, 80, 223237.Google Scholar
Wängberg, S.-Å. & Selmer, J.-S. 1997. Studies of effects of UV-B radiation on aquatic model ecosystems. In Häder, D.P., ed. The effects of ozone depletion on aquatic ecosystems. Austin, TX: R.G. Landes, 199213.Google Scholar
Wängberg, S.-Å., Garde, K., Gustavson, K. & Selmer, J.-S. 1999. Effects of UVB radiation on marine phytoplankton communities. Journal of Plankton Research, 21, 147166.Google Scholar
Waring, J., Underwood, G.J.C. & Baker, N.R. 2006. Impact of elevated UV-B radiationon photosynthetic electron transport, primary productivity and carbon allocation in estuarine epipelic diatoms. Plant Cell and Environment, 29, 521534.Google Scholar
Weatherhead, E.C. & Andersen, S.B. 2006. The search for signs of recovery of the ozone layer. Nature, 441, 3945.CrossRefGoogle ScholarPubMed
Witkowski, A., Lange-Bertalot, H. & Metzelin, D. 2000. Diatom flora of marine coasts I. Iconographia Diatomologica 7. Ruggell, Lichtenstein: Gantner Verlag K.G. 925 pp.Google Scholar
Worrest, R.C., Thomson, B.E. & Dyke, H.V. 1981. Impact of UV-B radiation upon estuarine microcosms. Photochemistry and Photobiology, 33, 861867.Google Scholar
Wulff, A., Nilsson, C., Sundbäck, K., Wängberg, S.-Å. & Odmark, S. 1999. UV radiation effects on microbenthos - a four month field experiment. Aquatic Microbial Ecology, 19, 269278.Google Scholar
Wulff, A., Wängberg, S.Å., Sundbäck, K., Nilsson, C. & Underwood, G.J.C. 2000. Effects of UVB radiation on a marine microphytobenthic community growing on a sand-substratum under different nutrient conditions. Limnology and Oceanography, 45, 11441152.Google Scholar
Wulff, A. & Zacher, K. in press. Short-term UV effects on the photosynthesis of Antarctic benthic diatoms. In The Potter Cove coastal ecosystem, Antarctica: synopsis of research performed 1999–2006 at the Dallmann-Laboratory and Jubany Station, King George Island. Berichte Polarforschung und Meeresforschung, Bremerhaven.Google Scholar
Zacher, K., Hanelt, D., Wiencke, C. & Wulff, A. 2007. Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage: a long-term field study. Polar Biology, 30, 12031212.Google Scholar