No CrossRef data available.
Published online by Cambridge University Press: 21 November 2024
Silicification - the precipitation of silica within the remains of a buried organism - allows for the three-dimensional preservation of a fossil in minute cellular to subcellular detail and forms the basis for some of the most spectacular Lagerstätten for terrestrial ecosystems (e.g. Selden & Nudds 2004). Among these are the plant-bearing chert deposits of the Transantarctic Mountains, which were discovered by J.H. Mercer and J.D. Gunner during the 1969/1970 ‘Beardmore Expedition’ and sampled and first screened by J.M. Schopf soon thereafter (Schopf 1970). The collection, preparation and in-depth study of plant-bearing cherts from the Beardmore Glacier generated more than 125 publications, and systematic treatments of the permineralized biotas resulted in the description of 30 genera and almost 50 species of structurally preserved plants and fungi. The exquisite anatomical preservation enabled unusually detailed reconstruction of many of the preserved organisms, yielding the most completely known fossil members for several groups of gymnosperms (see Escapa et al. 2011). Together with similar silicified peat deposits from the remote Prince Charles Mountains in East Antarctica (McLoughlin & Drinnan 1997), these conservation-Lagerstätten of the Transantarctic Mountains constitute an extraordinary window into the biology and ecology of late Palaeozoic and early Mesozoic high-latitude terrestrial ecosystems. Perhaps the single most important of these deposits is the silicified peat from the Triassic Fremouw Formation at Fremouw Peak in the Beardmore Glacier area. Triassic silicified peat also occurs elsewhere in the Transantarctic Mountains, including the Allan Hills in southern Victoria Land (Taylor & Taylor 1990) and Timber Peak in northern Victoria Land (Bomfleur et al. 2011), but thus far the quality of preservation at other sites proved too poor to merit in-depth study.