Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:04:39.077Z Has data issue: false hasContentIssue false

A (tidal-marine) boulder pavement in the late Cenozoic of Seymour Island, West Antarctica: contribution to the palaeogeographical and palaeoclimatic evolution of West Antarctica

Published online by Cambridge University Press:  07 September 2017

Antonio C. Rocha-Campos
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Brazil
Matheus Kuchenbecker*
Affiliation:
Laboratório de Estudos Tectônicos, Centro de Geociências, Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brazil Centro de Pesquisa Professor Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais, Brazil
Wania Duleba
Affiliation:
Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Brazil
Paulo Roberto Dos Santos
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Brazil
Fernanda M. Canile
Affiliation:
Faculdade de Ciências e Tecnologia, Universidade Federal de Goiás, Brazil
*
*Corresponding author: [email protected]

Abstract

We report here the discovery of a boulder pavement cropping out at the base of the Hobbs Glacier Formation (Miocene), on the northern sector of Seymour Island (Isla Marambio), West Antarctica, along the contact with the underlying La Meseta Formation (Eocene). The feature described has many points in common with boulder pavements developed in tidal-marine environments. The clasts of the pavement are mostly boulders and bear up to three sets of glacial striae on their bevelled truncated surfaces, but are not elongate parallel to them or bullet shaped. No diamictite body was identified associated with the boulder pavement. These features differ from those of boulder pavements described from terrestrially glaciated Cenozoic deposits and may indicate a shallow glaciomarine environment for the late Cenozoic of Seymour Island.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barret, P. 1999. Antarctic climate history over the last 100 million years. Terra Antarctica Reports, 3, 5372.Google Scholar
Benn, D.I. & Evans, D.J.A. 1998. Glaciers and glaciations. New York, NY: Wiley, 816 pp.Google Scholar
Brookfield, M., Merritt, J. & McMillan, A. 2010. The powfoot boulder pavement. In Livingstone, S., Evans, D.J.A. & O’Cofaigh, C., eds. The Quaternary of the Solway Lowlands and Pennine escarpment. Durham: Quaternary Research Association, 113115.Google Scholar
Concheyro, A., Salani, F.M., Adamonis, S. & Lirio, J.M. 2007. Los depósitos diamictíticos cenozoicos de la cuenca James Ross, Antártida: una síntesis estratigráfica y nuevos hallazgos paleontológicos. Revista de la Asociación Geológica Argentina, 62, 568585.Google Scholar
Clark, P.U. 1991. Striated clast pavements: products of deforming subglacial sediment? Geology, 19, 530533.2.3.CO;2>CrossRefGoogle Scholar
Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L. & Nyvit, D. 2013. Landscape evolution and ice-sheet behaviour in a semi-arid and polar environment, James Ross Island, NE Antarctic Peninsula. Special Publication of the Geological Society of London, No. 381, 10.1144/SP381.1.Google Scholar
Dione, J.C. 1981. A boulder-strewn tidal flat, north shore of the Gulf of St. Lawrence, Québec. Géographie physique et Quaternaire, 352, 261267.Google Scholar
Eyles, C.H. 1988. A model for striated boulder pavement formation on glaciated, shallow-marine shelves: an example from the Yakataga Formation, Alaska. Journal of Sedimentary Research, 58, 6271.Google Scholar
Eyles, C.H. 1994. Intertidal boulder pavements in the northeastern Gulf of Alaska and their geological significance. Sedimentary Geology, 88, 161173.CrossRefGoogle Scholar
Eyles, C.H. & Lagoe, M.B. 1990. Sedimentation patterns and facies geometries on a temperate glacially – influenced continental shelf: the Yakataga Formation, Middleton Island, Alaska. Special Publication of the Geological Society of London, No. 53, 363386.CrossRefGoogle Scholar
Francis, J.E., Crame, J.A., Pirrie, D. 2006. Cretaceous–Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica: introduction. Special Publication of the Geological Society of London, No. 258, 15.CrossRefGoogle Scholar
Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, R.M. & Thorn, V. 2008. 100 years of Antarctic climate evolution: evidence from fossil plant. In Cooper, A., Barret, P., Stagg, H., Storey, B., Stump, E. & Wiselle, R., eds. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies, 19–27.Google Scholar
Gazdzicki, A., Tatur, A., Hara, U. & del Valle, R.A. 2004. The Weddell Sea Formation, post-late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic Peninsula. Polish Polar Research, 25, 189204.Google Scholar
Hjort, C., Ingólfsson, O., Moller, P. & Lirio, J.M. 1997. Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. Journal of Quaternary Science, 12, 259273.3.0.CO;2-6>CrossRefGoogle Scholar
Ivany, L.C. 2007. Contributions to the Eocene climate record of the Antarctic Peninsula. Proceedings of the 10th International Symposium on Antarctic Earth Sciences, USGS OF-2007-1047, Extended abstract 068.Google Scholar
Ivany, L.C., van Symaeys, S., Domack, E.W. & Samson, S.D. 2006. Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula. Geology, 34, 377380.CrossRefGoogle Scholar
Jonkers, H.A., Lirio, J.M., del Valle, R.A. & Kelley, S.P. 2002. Age and environment of Miocene-Pliocene glaciomarine deposits, James Ross Island, Antarctica. Geological Magazine, 139, 577594.CrossRefGoogle Scholar
Little, C.T.S., Birgel, D., Boyce, A.J., Crame, A., Francis, J.E., Kiel, S., Peckmann, J., Pirrie, D., Rollinson, G.K. & Witts, J.D. 2015. Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 213228.CrossRefGoogle Scholar
Malagnino, E.C., Olivero, E.B., Rinaldi, A. & Spikermanny, J.P. 1981. Aspectos geomorfologicos de La Isla Vice-Comodoro Marambio, Antartida. Actas Del VIII Congresso Geologico Argentino, 2, 883896.Google Scholar
Marenssi, S.A., Casadio, S. & Santillana, S.N. 2010. Record of late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science, 22, 193198.CrossRefGoogle Scholar
Marenssi, S.A., Santillana, S.N. & Rinaldi, C.A. 1998. Stratigraphy of the La Meseta Formation (Eocene) Marambio (Seymour) Island, Antarctica. Publicación Especial Asociación Geologica Argentina, No. 8, 137140.Google Scholar
Montes, M., Nosal, F., Santillana, S.N., Marenssi, S.A. & Olivero, E. 2008. Geological map of Seymour Island, scale 1:20.000. Buenos Aires: Instituto Geologico y Minero de España and Instituto Antartico Argentino.Google Scholar
Porebski, S.J. 1995. Facies architecture in a tectonic controlled incised valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Studia Geologia Polonica, 107, 79.Google Scholar
Pirrie, D., Duane, A.M. & Riding, J.B. 1992. Jurassic–Tertiary stratigraphy and palynology of the James Ross Basin: review and introduction. Antarctic Science, 4, 259266.CrossRefGoogle Scholar
Rocha-Campos, A.C., Farjallat, J.E.S. & Yoshida, R. 1969. Crescentic marks on a late Paleozoic glacial pavement in southeastern Brazil. Geological Society of America Bulletin, 80, 11231126.CrossRefGoogle Scholar
Smith, R.T. & Anderson, J.B. 2010. Ice-sheet evolution in James Ross Basin, Weddel Sea margin of the Antarctic Peninsula: the seismic stratigraphic record. Geological Society of America Bulletin, 122, 830842.CrossRefGoogle Scholar
Troedsen, A.L. & Smellie, J.L. 2002. The Polonez Cove Formation of King George Island, Antarctica: stratigraphy, facies and implications for mid-Cenozoic cryosphere development. Sedimentology, 49, 277301.CrossRefGoogle Scholar