Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T15:27:46.630Z Has data issue: false hasContentIssue false

Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic Ice Sheet, Ricker Hills, Victoria Land

Published online by Cambridge University Press:  09 July 2008

Stefan Strasky*
Affiliation:
Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, 8092 Zurich, Switzerland
Luigia Di Nicola
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Siena, 53100 Siena, Italy Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Carlo Baroni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, e Istituto di Geoscienze e Georisorse CNR, 56126 Pisa, Italy
Maria Cristina Salvatore
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
Heinrich Baur
Affiliation:
Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, 8092 Zurich, Switzerland
Peter W. Kubik
Affiliation:
Paul Scherrer Institute, c/o Institute for Particle Physics, ETH Zurich, 8093 Zurich, Switzerland
Christian Schlüchter
Affiliation:
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Rainer Wieler
Affiliation:
Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, 8092 Zurich, Switzerland

Abstract

One of the major issues in (palaeo-) climatology is the response of Antarctic ice sheets to global climate changes. Antarctic ice volume has varied in the past but the extent and timing of these fluctuations are not well known. In this study, we address the question of amplitude and timing of past Antarctic ice level changes by surface exposure dating using in situ produced cosmogenic nuclides (10Be and 21Ne). The study area lies in the Ricker Hills, a nunatak at the boundary of the East Antarctic Ice Sheet in southern Victoria Land. By determining exposure ages of erratic boulders from glacial drifts we directly date East Antarctic Ice Sheet variations. Erosion-corrected neon and beryllium exposure ages indicate that a major ice advance reaching elevations of about 500 m above present ice levels occurred between 1.125 and 1.375 million years before present. Subsequent ice fluctuations were of lesser extent but timing is difficult as all erratic boulders from related deposits show complex exposure histories. Sample-specific erosion rates were on the order of 20–45 cm Ma-1 for a quartzite and 10–65 cm Ma-1 for a sandstone boulder and imply that the modern cold, arid climate has persisted since at least the early Pleistocene.

Type
Earth Science
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armienti, P. & Baroni, C. 1999. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology, 27, 617620.Google Scholar
Baroni, C. & Fasano, F. 2006. Micromorphological evidence of warm-based glacier deposition from the Ricker Hills Tillite (Victoria Land, Antarctica). Quaternary Science Reviews, 25, 976992.CrossRefGoogle Scholar
Baroni, C., Fasano, F., Giorgetti, G., Salvatore, M.C. & Ribecai, C. 2008. The Ricker Hills tillite provides evidence of Oligocene warm-based glaciation in Victoria Land, Antarctica. Global and Planetary Change, 60, 457470.CrossRefGoogle Scholar
Baroni, C., Noti, V., Ciccacci, S., Righini, G. & Salvatore, M.C. 2005. Fluvial origin of the valley system in northern Victoria Land (Antarctica) from quantitative geomorphic analysis. Geological Society of America Bulletin, 117, 212228.Google Scholar
Barrett, P.J. 1996. Antarctic palaeoenvironment through Cenozoic times - a review. Terra Antartica, 3, 103119.Google Scholar
Baur, H. 1999. A noble-gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity. Eos Transactions AGU, 80, Abstract V22B-08.Google Scholar
Capponi, G., Crispini, L., Meccheri, M., Musumeci, G., Pertusati, P.C., Baroni, C., Delisle, G. & Orsi, G. 1999. Antarctic geological 1:250,000 map series, Mount Joyce Quadrangle (Victoria Land). Siena: Museo Nazionale dell'Antartide, Sez. Scienze della Terra.Google Scholar
Cerling, T.E. & Craig, H. 1994. Geomorphology and in-situ cosmogenic isotopes. Annual Reviews of Earth and Planetary Sciences, 22, 273317.CrossRefGoogle Scholar
DeConto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245249.CrossRefGoogle ScholarPubMed
Delisle, G. 1997. Sub-ice topography in selected areas of Victoria Land, Antarctica: implications for its glacial erosion history. Antarctic Research Series, 68, 127135.Google Scholar
Denton, G.H., Prentice, M.L., Kellogg, D.E. & Kellogg, T.B. 1984. Late Tertiary history of the Antarctic Ice-Sheet: evidence from the Dry Valleys. Geology, 12, 263267.Google Scholar
Di Nicola, L., Strasky, S., Schlüchter, C., Salvatore, M.C., Kubik, P.W., Ivy-Ochs, S., Wieler, R., Akçar, N. & Baroni, C. 2007. Complex exposure history of pre-LGM glacial drifts in Terra Nova Bay, Victoria Land, using a multiple cosmogenic nuclide approach. In Cooper, A.K., Raymond, C.R. & ISAES Editorial Team, eds. Antarctica: a keystone in a changing world - online proceedings of the 10th ISAES X, USGS Open-File Report 2007-1047. Santa Barbara: US Geological Survey, 4 pp.Google Scholar
Dunne, J., Elmore, D. & Muzikar, P. 1999. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology, 27, 311.CrossRefGoogle Scholar
EPICA community members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429, 623628.Google Scholar
Fabel, D. & Harbor, J. 1999. The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology. Annals of Glaciology, 28, 103110.Google Scholar
Fink, D., McKelvey, B., Hambrey, M.J., Fabel, D. & Brown, R. 2006. Pleistocene deglaciation chronology of the Amery Oasis and Radok Lake, northern Prince Charles Mountains, Antarctica. Earth and Planetary Science Letters, 243, 229243.Google Scholar
Fogwill, C.J., Bentley, M.J., Sugden, D.E., Kerr, A.R. & Kubik, P.W. 2004. Cosmogenic nuclides 10Be and 26Al imply limited Antarctic Ice Sheet thickening and low erosion in the Shackleton Range for >1 m.y. Geology, 32, 265268.CrossRefGoogle Scholar
Gosse, J.C. & Phillips, F.M. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 14751560.CrossRefGoogle Scholar
Gunn, B.M. & Warren, G. 1962. Geology of Victoria Land between the Mawson and Mulock glaciers, Antarctica. New Zealand Geological Survey Bulletin, 71, 1157.Google Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van den Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A. 2001. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press, 881 pp.Google Scholar
Ivy-Ochs, S., Schlüchter, C., Kubik, P.W., Dittrich-Hannen, B. & Beer, J. 1995. Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica. Geology, 23, 10071010.2.3.CO;2>CrossRefGoogle Scholar
Jamieson, S.S.R., Hulton, N.R.J., Sugden, D.E., Payne, A.J. & Taylor, J. 2005. Cenozoic landscape evolution of the Lambert basin, East Antarctica: the relative role of rivers and ice sheets. Global and Planetary Change, 45, 3549.Google Scholar
Kennett, J.P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research, 82, 38433860.CrossRefGoogle Scholar
Kohl, C.P. & Nishiizumi, K. 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56, 35833587.Google Scholar
Lal, D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104, 424439.CrossRefGoogle Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R. & Machlus, M.L. 2007. Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin, 119, 14491461.CrossRefGoogle Scholar
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J. & Fanning, P.C. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.Google Scholar
Naish, T.R., Woolfe, K.J., Barrett, P.J., Wilson, G.S., Atkins, C., Bohaty, S.M., Bücker, C.J., Claps, M., Davey, F.J., Dunbar, G.B., Dunn, A.G., Fielding, C.R., Florindo, F., Hannah, M.J., Harwood, D.M., Henrys, S.A., Krissek, L.A., Lavelle, M., van der Meer, J., McIntosh, W.C., Niessen, F., Passchier, S., Powell, R.D., Roberts, A.P., Sagnotti, L., Scherer, R.P., Strong, C.P., Talarico, F., Verosub, K.L., Villa, G., Watkins, D.K., Webb, P.N. & Wonik, T. 2001. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature, 413, 719723.CrossRefGoogle ScholarPubMed
Niedermann, S. 2000. The 21Ne production rate in quartz revisited. Earth and Planetary Science Letters, 183, 361364.CrossRefGoogle Scholar
Niedermann, S., Graf, T. & Marti, K. 1993. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth and Planetary Science Letters, 118, 6573.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Salvatore, M.C., Baur, H. & Wieler, R. 2008. Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes. Antarctic Science, 20, 8998.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Schaefer, J.M., Orombelli, G., Ivy-Ochs, S., Kubik, P.W., Baur, H. & Wieler, R. 2003. Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides. Antarctic Science, 15, 493502.Google Scholar
Orombelli, G., Baroni, C. & Denton, G.H. 1991. Late Cenozoic glacial history of the Terra Nova Bay region, northern Victoria Land, Antarctica. Geografia Fisica e Dinamica Quaternaria, 13, 139163.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.Google Scholar
Putkonen, J., Balco, G. & Morgan, D. 2008. Slow regolith degradation without creep determined by cosmogenic nuclide measurements in Arena Valley, Antarctica. Quaternary Research, 69, 242249.Google Scholar
Ricker, J. 1964. Outline of the geology between Mawson and Priestley glaciers, Victoria Land. In Adie, R.J., ed. Antarctic geology. Amsterdam: North Holland Publishing Company, 265275.Google Scholar
Rignot, E. & Thomas, R.H. 2002. Mass balance of polar ice sheets. Science, 297, 15021506.CrossRefGoogle ScholarPubMed
Schäfer, J.M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G.H. & Schlüchter, C. 1999. Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth and Planetary Science Letters, 167, 215226.Google Scholar
Scher, H.D. & Martin, E.E. 2006. Timing and climatic consequences of the opening of Drake Passage. Science, 312, 428430.Google Scholar
Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 2375323759.CrossRefGoogle Scholar
Sugden, D. & Denton, G. 2004. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis. Geological Society of America Bulletin, 116, 840857.Google Scholar
Sugden, D.E., Balco, G., Cowdery, S.G., Stone, J.O. & Sass, L.C. 2005. Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology, 67, 317334.CrossRefGoogle Scholar
Summerfield, M.A., Stuart, F.M., Cockburn, H.A.P., Sugden, D.E., Denton, G.H., Dunai, T. & Marchant, D.R. 1999. Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology, 27, 113129.CrossRefGoogle Scholar
Synal, H.-A., Bonani, G., Döbeli, M., Ender, R.M., Gartenmann, P., Kubik, P.W., Schnabel, C. & Suter, M. 1997. Status report of the PSI/ETH AMS facility. Nuclear Instruments and Methods in Physics Research, 123, 6268.Google Scholar
Vermeesch, P. 2007. CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems, 8, 10.1029/2006GC001530.Google Scholar
Wolff, E.W. 2005. Understanding the past - climate history from Antarctica. Antarctic Science, 17, 487495.CrossRefGoogle Scholar