Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T04:43:57.894Z Has data issue: false hasContentIssue false

Structurally preserved fungi from Antarctica: diversity and interactions in late Palaeozoic and Mesozoic polar forest ecosystems

Published online by Cambridge University Press:  18 March 2016

Carla J. Harper*
Affiliation:
Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany Department of Ecology and Evolutionary Biology, University of Kansas, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
Thomas N. Taylor
Affiliation:
Department of Ecology and Evolutionary Biology, University of Kansas, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
Michael Krings
Affiliation:
Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany Department of Ecology and Evolutionary Biology, University of Kansas, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
Edith L. Taylor
Affiliation:
Department of Ecology and Evolutionary Biology, University of Kansas, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA

Abstract

Chert and silicified wood from the Permian through Cretaceous of Antarctica contain abundant information on fungal diversity and plant–fungal interactions. The chert deposits represent a particularly interesting setting for the study of plant–fungal interactions because they preserve remains of distinctive high latitude forest ecosystems with polar light regimes that underwent a profound climate change from icehouse to greenhouse conditions. Moreover, some of the cherts and wood show the predominance of extinct groups of seed plants (e.g. Glossopteridales, Corystospermales). Over the past 30 years, documentation of fossil fungi from Antarctica has shifted from a by-product of plant descriptive studies to a focused research effort. This paper critically reviews the published record of fungi and fungal associations and interactions in the late Palaeozoic and Mesozoic cherts and silicified wood from Antarctica; certain fungal palynomorphs and fungal remains associated with adpression fossils and cuticles are also considered. Evidence of mutualistic (mycorrhizal), parasitic and saprotrophic fungi associated with plant roots, stems, leaves and reproductive organs is presented, together with fungi occurring within the peat matrix and animal–fungus interactions. Special attention is paid to the morphology of the fungi, their systematic position and features that can be used to infer fungal nutritional modes.

Type
Synthesis
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, R.T. & Schenck, N.C. 1990. A revision of the genus Sclerocystis (Glomaceae, Glomales). Mycologia, 82, 703714.Google Scholar
Ander, P. & Eriksson, K.E. 1977. Selective degradation of wood components by white rot fungi. Physiologia plantarum, 41, 239248.CrossRefGoogle Scholar
Arnold, A.E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21, 5166.CrossRefGoogle Scholar
Askin, R.A. 1989. Endemism and heterochroneity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Islands, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. In Crame, J.A., ed. Origins and evolution of the Antarctic biota. Special Publication of the Geological Society of London, No. 47, 107–119.Google Scholar
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany, 85, 704713.CrossRefGoogle ScholarPubMed
Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J. & Eichlerová, I. 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 6, 111.CrossRefGoogle Scholar
Ballance, P.F. & Watters, W.A. 1971. Mawson Diamictite and the Carapace Sandstone, formations of the Ferrar Group at Allan Hills and Carapace Nunatak, Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 14, 512527.CrossRefGoogle Scholar
Barrett, P.J. 1969. Stratigraphy and petrology of the mainly fluviatile Permian and Triassic Beacon rocks, Beardmore Glacier area, Antarctica. Institute of Polar Studies Report No. 34. Ohio State University, 132 pp.Google Scholar
Bennett, A.J.R. & Taylor, G.H. 1972. Coals from the vicinity of the Prince Charles Mountains. In Adie, R.J., ed. Antarctic geology and geophysics. Oslo: Universitetsforlaget, 591598.Google Scholar
Bergene, J.A., Taylor, E.L. & Taylor, T.N. 2013. Dordrechtites arcanus sp. nov., an anatomically preserved gymnospermous reproductive structure from the Middle Triassic of Antarctica. International Journal of Plant Sciences, 174, 250265.Google Scholar
Blanchette, R.A. 1984. Screening wood decayed by white rot fungi for preferential lignin degradation. Applied and Environmental Microbiology, 48, 647653.CrossRefGoogle ScholarPubMed
Bomfleur, B., Schneider, J., Schöner, R., Viereck-Götte, L. & Kerp, H. 2007. Exceptionally well-preserved Triassic and early Jurassic floras from north Victoria Land, Antarctica. Extended Abstract 034. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES editorial team., eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academic Press, 4 pp.Google Scholar
Bomfleur, B., Schneider, J., Schöner, R., Viereck, L. & Kerp, H. 2011. Fossil sites in the continental Victoria and Ferrar groups (Triassic-Jurassic) of north Victoria Land, Antarctica. Polarforschung, 80, 8899.Google Scholar
Bomfleur, B., Decombeix, A.-L., Escapa, I.H., Schwendemann, A.B. & Axsmith, B. 2013. Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. International Journal of Plant Sciences, 174, 425444.CrossRefGoogle Scholar
Bomfleur, B., Decombeix, A.-L., Schwendemann, A.B., Escapa, I.H., Taylor, E.L., Taylor, T.N. & McLoughlin, S. 2014a. Habit and ecology of the Petriellales, an unusual group of seed plants form the Triassic of Gondwana. International Journal of Plant Sciences, 175, 10621075.CrossRefGoogle Scholar
Bomfleur, B., Schöner, R., Schneider, J.W., Viereck, L., Kerp, H. & McKellar, J.L. 2014b. From the Transantarctic Basin to the Ferrar Large Igneous Province: new palynostratigraphic age constraints for Triassic-Jurassic sedimentation and magmatism in East Antarctica. Review of Palaeobotany and Palynology, 207, 1837.CrossRefGoogle Scholar
Bowman, V.C., Francis, J.E. & Riding, J.B. 2013. Late Cretaceous winter sea ice in Antarctica? Geology, 41, 12271230.CrossRefGoogle Scholar
Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B. & Swindles, G.T. 2014. Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctica Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 2647.CrossRefGoogle Scholar
Bromfield, K., Burrett, C.F., Leslie, R.A. & Meffre, S. 2007. Jurassic volcaniclastic–basaltic andesite–dolerite sequence in Tasmania: new age constraints for fossil plants from Luna River. Australian Journal of Earth Sciences, 54, 965974.Google Scholar
Bultman, T.L. & Mathews, P.L. 1996. Mycophagy by a millipede and its possible impact on an insect-fungus mutualism. Oikos, 75, 6774.CrossRefGoogle Scholar
Cafaro, M.J. 2005. Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Molecular Phylogenetics and Evolution, 35, 2134.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A petrified cycad trunk from the Late Cretaceous of the Larsen Basin, Antarctica. Alcheringa, 24, 307318.Google Scholar
Cantrill, D.J. & Drinnan, A.N. 1994. Late Triassic megaspores from the Amery Group, Prince Charles Mountains, East Antarctica. Alcheringa, 18, 7178.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Review of Palaeobotany and Palynology, 115, 119145.CrossRefGoogle ScholarPubMed
Cantrill, D.J. & Poole, I. 2013. The vegetation of Antarctica through geological time. Cambridge: Cambridge University Press, 490 pp.Google Scholar
Carroll, G. 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69, 29.Google Scholar
Chapman, R.L. & Good, B.H. 1983. Subaerial symbiotic green algae: interactions with vascular plant hosts. In Goff, L.J., ed. Algal symbiosis: a continuum of interaction strategies. Cambridge: Cambridge University Press, 173204.Google Scholar
Chen, K., Stilwell, J.D. & May, C. 2015. Palaeoenvironmental reconstruction of Livingston Island, Antarctic Peninsula, in the Early Cretaceous: interpretations from the Walker Bay erratics. Alcheringa, 39, 465476.CrossRefGoogle Scholar
Collinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. & Veevers, J.J. 1994. Permian-Triassic Transantarctic basin. Geological Society of America Memoirs, 184, 173222.Google Scholar
Cooke, R.C. & Rayner, A.D. 1984. Ecology of saprotrophic fungi. Longman, NY: Addison-Wesley Educational Publishers, 438 pp.Google Scholar
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature, 184, 17821785.CrossRefGoogle Scholar
Decombeix, A.-L., Taylor, E.L. & Taylor, T.N. 2009. Secondary growth in Vertebraria roots from the Late Permian of Antarctica: a change in developmental timing. International Journal of Plant Sciences, 170, 644656.Google Scholar
Demchenko, K., Winzer, T., Stougaard, J., Parniske, M. & Pawlowski, K. 2004. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytologist, 163, 381392.CrossRefGoogle ScholarPubMed
Dick, M.W. 1992. Patterns of phenology in populations of zoosporic fungi. In Carroll, G. & Wicklow, D., eds. The fungal community, its organization and role in the ecosystem, 2nd Ed. New York, NY: Marcel Dekker, 355382.Google Scholar
Dick, M.W. 2001. Straminipilous fungi: systematics of the peronosporomycetes, including accounts of the marine straminipilous protists, the plasmodiophorids, and similar organisms. Dordrecht: Kluwer Academic Publishers, 670 pp.Google Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palynoassemblages associated with a theropod dinosaur from the Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research, 45, 135154.CrossRefGoogle Scholar
Dotzler, N., Krings, M., Agerer, R., Galtier, J. & Taylor, T.N. 2008. Combresomyces cornifer gen. sp. nov., an endophytic peronosporomycete in Lepidodendron from the Carboniferous of central France. Mycological Research, 112, 11071114.Google Scholar
Duane, A.M. 1996. Palynology of the Byers Group (Late Jurassic–Early Cretaceous) of Livingston and Snow Islands, Antarctic Peninsula: its biostratigraphical and palaeoenvironmental significance. Review of Palaeobotany and Palynology, 91, 241281.CrossRefGoogle Scholar
Dutra, T.L. & Batten, D.J. 2000. Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. Cretaceous Research, 21, 181209.CrossRefGoogle Scholar
Eklund, H., Cantrill, D.J. & Francis, J.E. 2004. Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. Cretaceous Research, 25, 211228.CrossRefGoogle Scholar
Elliot, D.H. & Fleming, T.H. 2008. Physical volcanology and geological relationships of the Jurassic Ferrar Large Igneous Province, Antarctica. Journal of Volcanology and Geothermal Research, 172, 2037.CrossRefGoogle Scholar
Eriksson, K.E.L., Blanchette, R.A. & Ander, P. 1990. Morphological aspects of wood degradation by fungi and bacteria. In Eriksson, K.E.L., Blanchette, R.A. & Ander, P. Microbial and enzymatic degradation of wood and wood components. Berlin: Springer, 187.CrossRefGoogle Scholar
Escapa, I.H., Taylor, E.L., Cúneo, R., Bomfleur, B., Bergene, J., Serbet, R. & Taylor, T.N. 2011. Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. PALAIOS, 26, 522544.Google Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2001. Gymnosperm woods from the Cretaceous (mid-Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc. Cretaceous Research, 22, 277293.Google Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetlands Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. PALAIOS, 17, 491506.Google Scholar
Falcon-Lang, H.J., Cantrill, D.J. & Nichols, G.J. 2001. Biodiversity and terrestrial ecology of a mid-Cretaceous, high-latitude floodplain, Alexander Island, Antarctica. Journal of the Geological Society, 158, 709724.Google Scholar
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani, 15, 285388.Google Scholar
Fogel, R. & Trappe, J.M. 1978. Fungus consumption mycophagy by small animals. Northwest Science, 52, 131.Google Scholar
Foster, C.B., Stephenson, M.H., Marshall, C., Logan, G.A. & Greenwood, P.F. 2002. A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology, 26, 3558.Google Scholar
Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, A.-M. & Thorn, V. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES editorial team., eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academic Press, 1928.Google Scholar
Gair, H.S., Norris, G. & Ricker, J. 1965. Early Mesozoic microfloras from Antarctica. New Zealand Journal of Geology and Geophysics, 8, 231235.CrossRefGoogle Scholar
Garcia Massini, J.L. 2007a. A glomalean fungus from the Permian of Antarctica. International Journal of Plant Sciences, 168, 673678.CrossRefGoogle Scholar
Garcia Massini, J.L. 2007b. A possible endoparasitic chytridiomycete fungus from the Permian of Antarctica. Palaeontologia Electronica, 10, http://palaeo-electronica.org/2007_3/121/index.html.Google Scholar
Gerdemann, J.W. & Trappe, J.M. 1974. The Endogonaceae in the Pacific Northwest. Mycological Memoir, No. 5, 176.Google Scholar
Godfrey, R.M. 1957. Studies of British species of Endogone. I. Morphology and taxonomy. Transactions of the British Mycological Society, 40, 117135.Google Scholar
Goodman, R.M. & Weisz, J.B. 2002. Plant-microbe symbioses: an evolutionary survey. In Staley, J.T. & Reysenbach, A.L., eds. Biodiversity of microbial life. Foundation of earth’s biosphere. New York, NY: Wiley-Liss, 237287.Google Scholar
Gunn, B.M. & Warren, G. 1962. Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica. New Zealand Geological Survey Bulletin, 71, 1157.Google Scholar
Harper, C.J. 2015. The diversity and interactions of fungi from the Paleozoic and Mesozoic of Antarctica. PhD thesis. University of Kansas, 345 pp. [Unpublished].Google Scholar
Harper, C.J., Bomfleur, B., Decombeix, A.-L., Taylor, E.L., Taylor, T.N. & Krings, M. 2012. Tylosis formation and fungal interactions in an Early Jurassic conifer from northern Victoria Land, Antarctica. Review of Palaeobotany and Palynology, 175, 2531.Google Scholar
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2013. Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica. Review of Palaeobotany and Palynology, 192, 2231.Google Scholar
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2015a. Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctic. Review of Palaeobotany and Palynology, 215, 7684.CrossRefGoogle Scholar
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2015b. Fungi associated with Glossopteris (Glossopteridales) leaves from the Permian of Antarctica: a preliminary report. Zitteliana, A55, 107114.Google Scholar
Hawksworth, D.L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological research, 95, 641655.CrossRefGoogle Scholar
Hergt, J.M. & Brauns, C.M. 2001. On the origin of the Tasmanian dolerites. Australian Journal of Earth Sciences, 48, 543549.CrossRefGoogle Scholar
Hermsen, E.J., Taylor, E.L. & Taylor, T.N. 2009. Morphology and ecology of the Antarcticycas plant. Review of Palaeobotany and Palynology, 153, 108123.CrossRefGoogle Scholar
Hernández-Castillo, G.R., Rothwell, G.W. & Mapes, G. 2001. Compound pollen cone in a Paleozoic conifer. American Journal of Botany, 88, 11391142.Google Scholar
Herrera, C.M. & Pellmyr, O. eds. 2009. Plant-animal interactions: an evolutionary approach. Malden, MA: John Wiley & Sons, 328 pp.Google Scholar
Hieger, T.J., Serbet, R., Harper, C.J., Taylor, T.N., Taylor, E.L. & Gulbranson, E.L. 2015. Cheirolepidiaceous diversity: an anatomically preserved pollen cone from the Lower Jurassic of southern Victoria Land, Antarctica. Review of Palaeobotany and Palynology, 220, 7887.CrossRefGoogle Scholar
Holdgate, G.R., McLoughlin, S., Drinnan, A.N., Finkelman, R.B., Willett, J.C. & Chiehowsky, L.A. 2005. Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology, 63, 156177.Google Scholar
Hutchinson, S.A. 1955. A review of the genus Sporocarpon Williamson. Annals of Botany, 19, 425435.Google Scholar
Iglesias, A., Artabe, A.E. & Morel, E.M. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnaean Society, 103, 409422.Google Scholar
Jefferson, T.H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology, 25, 681708.Google Scholar
Jefferson, T.H. 1987. The preservation of conifer wood: examples from the Lower Cretaceous of Antarctica. Palaeontology, 30, 233249.Google Scholar
Jefferson, T.H., Siders, M.A. & Haban, M.A. 1983. Jurassic trees engulfed by lavas of the Kirkpatrick Basalt Group, northern Victoria Land. Antarctic Journal of the United States, 18 (5), 1416.Google Scholar
Johnson, N.C., Graham, J.H. & Smith, F.A. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575586.Google Scholar
Kidder, D.L. & Worsley, T.R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 207237.Google Scholar
Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. , eds. 2008. Dictionary of the fungi, 10th Ed. Wallingford: CAB International Publishing, 771 pp.Google Scholar
Kirk, T.K. & Farrell, R.L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465505.CrossRefGoogle ScholarPubMed
Klavins, S.D., Taylor, E.L., Krings, M. & Taylor, T.N. 2003. Gymnosperms from the Middle Triassic of Antarctica: the first structurally preserved cycad pollen cone. International Journal of Plant Sciences, 164, 10071020.Google Scholar
Krings, M., Taylor, T.N. & Dotzler, N. 2013. Fossil evidence of the zygomycetous fungi. Persoonia, 30, 110.Google Scholar
Krings, M., Taylor, T.N. & White, J.F. Jr. 2011. Fungal sporocarps from the Carboniferous: an unusual specimen of Traquairia . Review of Palaeobotany and Palynology, 168, 16.Google Scholar
Krings, M., Taylor, T.N., Dotzler, N. & Persichini, G. 2012. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica. Mycologia, 104, 835844.Google Scholar
Krings, M., Taylor, T.N., Taylor, E.L., Kerp, H. & Dotzler, N. 2014. First record of a fungal “sporocarp” from the Lower Devonian Rhynie chert. Palaeobiodiversity and Palaeoenvironments, 94, 221227.CrossRefGoogle Scholar
Lawrence, J.F. & Milner, R.J. 1996. Associations between arthropods and fungi. Fungi of Australia, 1, 137202.Google Scholar
Lawver, L.A., Gahagan, L.M. & Coffin, M.E. 1992. The development of paleoseaways around Antarctica. Antarctic Research Series, 56, 730.Google Scholar
Lindström, S. & McLoughlin, S. 2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 145, 89122.Google Scholar
Leben, C. 1965. Epiphytic microorganisms in relation to plant disease. Annual Review of Phytopathology, 3, 209230.CrossRefGoogle Scholar
Marschner, H. & Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89102.CrossRefGoogle Scholar
McLoughlin, S. & Drinnan, A.N. 1996. Anatomically preserved Permian Noeggerathiopsis leaves from East Antarctica. Review of Palaeobotany and Palynology, 92, 207227.Google Scholar
McLoughlin, S., Lindström, S. & Drinnan, A.N. 1997. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9, 281298.Google Scholar
McLoughlin, S., Drinnan, A.N., Slater, B.J. & Hilton, J. 2015. Paurodendron stellatum: a new Permian permineralized herbaceous lycopsid from the Prince Charles Mountains, Antarctica. Review of Palaeobotany and Palynology, 220, 115.Google Scholar
Mendgen, K., Hahn, M. & Deising, H. 1996. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34, 367386.Google Scholar
Merlotti, S. & Kurzawe, F. 2006. Estudo taxonômico do gênero Australoxylon Marguerier 1973 com a descrição de A. catarinensis sp. nov. para o Permiano inferior, Bacia Do Paraná, Brasil. Revista Brasileira de Paleontologia, 9, 7381.CrossRefGoogle Scholar
Meyer-Berthaud, B. & Taylor, T.N. 1991. A probable conifer with podocarpacean affinities from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 67, 179198.Google Scholar
Morton, J.B. 1990. Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia, 82, 192207.CrossRefGoogle Scholar
Mussa, D. 1978. On the anatomy of wood showing affinities with the genus Vertebraria Royle from the Irati Formation, State of São Paulo, Brazil. Boletim, Instituto de Geociências, Universidade de São Paulo, 9, 153201.Google Scholar
Neish, P.G., Drinnan, A.N. & Cantrill, D.J. 1993. Structure and ontogeny of Vertebraria from silicified Permian sediments in East Antarctica. Review of Palaeobotany and Palynology, 79, 221243.Google Scholar
Norstog, K.J. & Nicholls, T.J. 1997. The biology of the cycads. Ithaca, NY: Cornell University Press, 363 pp.Google Scholar
Oehl, F., Redecker, D. & Sieverding, E. 2005. Glomus badium, a new sporocarpic mycorrhizal fungal species from European grasslands with higher soil pH. Journal of Applied Botany and Food Quality, 79, 3843.Google Scholar
Osborn, J.M., Taylor, T.N. & White, J.F. 1989. Palaeofibulus gen. nov., a clamp-bearing fungus from the Triassic of Antarctica. Mycologia, 81, 622626.Google Scholar
Osborn, J.M., Phipps, C.J., Taylor, T.N. & Taylor, E.L. 2000. Structurally preserved sphenophytes from the Triassic of Antarctica: reproductive remains of Spaciinodum . Review of Palaeobotany and Palynology, 111, 225235.Google Scholar
Padgett, D.E., Kendrick, A.S., Hearth, J.H. & Webster, W.D. 1988. Influence of salinity, temperature, and nutrient availability on the respiration of saprolegniaceous fungi (Oomycetes). Holarctic Ecology, 11, 119126.Google Scholar
Palukaitis, P., Carr, J.P. & Schoelz, J.E. 2008. Plant-virus interactions. Methods in Molecular Biology, 451, 319.Google Scholar
Pant, D.D. 2002. Fossil history and phylogeny. In Pant, D.D. & Osborne, R., eds. An introduction to gymnosperms, cycads and cycadales. Lucknow: Birbal Sahni Institute of Palaeobotany, 267307.Google Scholar
Pearce, R.B. 1996. Antimicrobial defences in the wood of living trees. New Phytologist, 132, 203233.Google Scholar
Perovich, N.E. & Taylor, E.L. 1989. Structurally preserved fossil plants from Antarctica. 4. Triassic ovules. American Journal of Botany, 76, 992999.Google Scholar
Phipps, C.J. & Taylor, T.N. 1996. Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia, 88, 707714.Google Scholar
Phipps, C.J., Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 2000. Gleichenipteris antarcticus gen. et sp. nov. from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 108, 7583.Google Scholar
Pirozynski, K.A. & Malloch, D.W. 1975. The origin of land plants: matter of mycotrophism. Biosystems, 6, 153164.Google Scholar
Plumstead, E.P. 1962. Geology. 2. Fossil floras of Antarctica (with an appendix on Antarctic fossil wood by R. Kräusel). Trans-Antarctic Expedition 1955–1958. Scientific Report No. 9, Geology. London: Trans-Antarctic Expedition Committee, 154 pp.Google Scholar
Plumstead, E.P. 1975. A new assemblage of plant fossils from Milorgfjella, Dronning Maud Land. British Antarctic Survey Scientific Reports, 83, 130.Google Scholar
Poole, I. & Cantrill, D.J. 2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Special Publication of the Geological Society of London, No. 258, 6381.CrossRefGoogle Scholar
Poole, I. & Francis, J.E. 1999. The first record of fossil atherospermataceous wood from the Upper Cretaceous of Antarctica. Review of Palaeobotany and Palynology, 107, 97107.Google Scholar
Poole, I. & Francis, J.E. 2000. The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Annals of Botany, 85, 307315.Google Scholar
Poole, I., Cantrill, D.J., Hayes, P. & Francis, J. 2000. The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica? Review of Palaeobotany and Palynology, 111, 127144.Google Scholar
Preto, N., Kustatscher, E. & Wagnall, P.B. 2010. Triassic climates – state of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 10.1016/j.palaeo.2010.03.015.Google Scholar
Pujana, R.R., Marenssi, S.A. & Santillana, S.N. 2015. Fossil woods from the Cross Valley Formation (Paleocene of Western Antarctica): Araucariaceae-dominated forests. Review of Palaeobotany and Palynology, 222, 5666.Google Scholar
Read, D.J., Duckett, J.G., Francis, R., Ligrone, R. & Russell, A. 2000. Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society, B355, 815831.Google Scholar
Redman, R.S., Dunigan, D.D. & Rodriguez, R.J. 2001. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist, 151, 705716.Google Scholar
Rigby, J.F. 1972. The flora of the Kaloola Member of the Baralaba Coal Measures, Central Queensland. Geological Survey of Queensland, 352, 112.Google Scholar
Riley, T.R., Curtis, M.L., Leat, P.T., Watkeys, M.K., Duncan, R.A., Millar, I.L. & Owens, W.H. 2006. Overlap of Karoo and Ferrar magma types in KwaZulu-Natal, South Africa. Journal of Petrology, 47, 541566.Google Scholar
Rodriguez, R.J., White, J.F., Arnold, A.E. & Redman, R.S. 2009. Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.Google Scholar
Rössler, R., Philippe, M., van Konijnenburg-van Cittert, J.H.A. et al. 2014. Which name(s) should be used for Araucaria-like fossil wood? Results of a poll. Taxon, 63, 177184.Google Scholar
Rothwell, G.W., Mapes, G. & Hernández-Castillo, G.R. 2005. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54, 733750.CrossRefGoogle Scholar
Schopf, J.M. 1970. Petrified peat from a Permian coal bed in Antarctica. Science, 169, 274277.Google Scholar
Schopf, J.M. 1975. Modes of fossil preservation. Review of Palaeobotany and Palynology, 20, 2753.Google Scholar
Schwarze, F.W.M.R., Engels, J., Mattheck, C. & Linnard, W. 2000. Fungal strategies of wood decay in trees. Berlin: Springer, 185 pp.CrossRefGoogle Scholar
Schwendemann, A.B., Taylor, T.N., Taylor, E.L. & Krings, M. 2010a. Organization, anatomy, and fungal endophytes of a Triassic conifer embryo. American Journal of Botany, 97, 18731883.Google Scholar
Schwendemann, A.B., Decombeix, A.-L., Taylor, T.N., Taylor, E.L. & Krings, M. 2011. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. Proceedings of the National Academy of Sciences of the United States of America, 108, 13 63013 634.CrossRefGoogle ScholarPubMed
Schwendemann, A.B., Taylor, T.N., Taylor, E.L., Krings, M. & Dotzler, N. 2009. Combresomyces cornifer from the Triassic of Antarctica: evolutionary stasis in the Peronosporomycetes. Review of Palaeobotany and Palynology, 154, 15.Google Scholar
Schwendemann, A.B., Taylor, T.N., Taylor, E.L., Krings, M. & Osborn, J.M. 2010b. Modern traits in early Mesozoic sphenophytes: the Equisetum-like cones of Spaciinodum collinsonii with in situ spores and elaters from the Middle Triassic of Antarctica. In Gee, C.T., ed. Plants in Mesozoic time: morphological innovation, phylogeny, ecosystems. Bloomington, IN: Indiana University Press, 1534.Google Scholar
Seward, A.C. & Ford, S.O. 1906. The Araucariae, recent and extinct. Philosophical Transactions of the Royal Society, B198, 305411.Google Scholar
Slater, B.J., McLoughlin, S. & Hilton, J. 2012. Animal–plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 363, 109126.CrossRefGoogle Scholar
Slater, B.J., McLoughlin, S. & Hilton, J. 2013. Peronosporomycetes (Oomycota) from a Middle Permian permineralised peat within the Bainmedart coal measures, Prince Charles Mountains, Antarctica. PLoS ONE, 8, 10.1371/journal.pone.0070707.Google Scholar
Slater, B.J., McLoughlin, S. & Hilton, J. 2015. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Research, 27, 14461473.Google Scholar
Smoot, E.L., Taylor, T.N. & Delevoryas, T. 1985. Structurally preserved fossil plants from Antarctica. 1. Antarcticycas gen. nov. a Triassic cycad stem from the Beardmore Glacier area. American Journal of Botany, 72, 14101423.Google Scholar
Song, Z.C. & Cao, L. 1994. Late Cretaceous fungal spores from King George Island, Antarctica. In Shen, Y.B., ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island, Antarctica. Beijing: Science Press. State Antarctic Committee, Monograph 3, 37–49. [In Chinese, English abstract and description of new genus and species].Google Scholar
Soto, M.J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J. & Olivares, J. 2009. Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cellular microbiology, 11, 381388.Google Scholar
Southworth, D., ed. 2012. Biocomplexity of plant-fungal interactions, 1st Ed. Oxford: Wiley-Blackwell, 220 pp.Google Scholar
Steiner, M.B., Eshet, Y., Rampino, M.R. & Schwindt, D.M. 2003. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405414.Google Scholar
Stokland, J.N., Siitonen, J. & Jonsson, B.G. 2012. Biodiversity in dead wood. Cambridge: Cambridge University Press, 509 pp.Google Scholar
Strullu-Derrien, C., Kenrick, P., Rioult, J.P. & Strullu, D.G. 2010. Evidence of parasitic Oomycetes (Peronosporomycetes) infecting the stem cortex of the Carboniferous seed fern Lyginopteris oldhamia . Proceedings of the Royal Society, B278, 675680.Google Scholar
Strullu-Derrien, C., Kenrick, P., Pressel, S., Duckett, J.G., Rioult, J.-P. & Strullu, D.-G. 2014. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights ancestral plant–fungal symbioses. New Phytologist, 203, 964979.Google Scholar
Stubblefield, S.P. & Taylor, T.N. 1985. Fossil fungi in Antarctic wood. Antarctic Journal of the United States, 20 (5), 78.Google Scholar
Stubblefield, S.P. & Taylor, T.N. 1986. Wood decay in silicified gymnosperms from Antarctica. Botanical Gazette, 147, 116125.Google Scholar
Stubblefield, S.P., Taylor, T.N. & Beck, C.B. 1985. Studies of Paleozoic fungi. 4. Wood-decaying fungi in Callixylon newberryii from the Upper Devonian. American Journal of Botany, 72, 17651773.Google Scholar
Stubblefield, S.P., Taylor, T.N. & Seymour, R.L. 1987a. A possible endogonaceous fungus from the Triassic of Antarctica. Mycologia, 79, 905906.Google Scholar
Stubblefield, S.P., Taylor, T.N. & Trappe, J.M. 1987b. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. American Journal of Botany, 74, 19041911.Google Scholar
Stubblefield, S.P., Taylor, T.N. & Trappe, J.M. 1987c. Fossil mycorrhizae: a case for symbiosis. Science, 237, 5960.Google Scholar
Swain, T. 1977. Secondary compounds as protective agents. Annual Review of Plant Physiology and Plant Molecular Biology, 28, 479501.Google Scholar
Talbot, J.M., Allison, S.D. & Treseder, K.K. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955963.Google Scholar
Taylor, E.L. & Taylor, T.N. 1990. Structurally preserved Permian and Triassic floras from Antarctica. In Taylor, T.N. & Taylor, E.L., eds. Antarctic paleobiology: its role in the reconstruction of Gondwana. New York, NY: Springer, 149163.Google Scholar
Taylor, E.L., Taylor, T.N. & Collinson, J.W. 1989. Depositional setting and paleobotany of Permian and Triassic permineralized peat from the central Transantarctic Mountains, Antarctica. International Journal of Coal Geology, 12, 657679.Google Scholar
Taylor, E.L., Taylor, T.N., Collinson, J.W. & Elliot, D.H. 1986. Structurally preserved Permian plants from Skaar Ridge, Beardmore Glacier region. Antarctic Journal of the United States, 21 (5), 2728.Google Scholar
Taylor, T.N. 1990. The fossil fungi of Antarctica. In Kun, G., ed. Proceedings on the International Symposium on Antarctic Research. Hangzhou, Peoples Republic of China, May 1989. Tianjin: China Ocean Press, 103108.Google Scholar
Taylor, T.N. & Stubblefield, S.P. 1987. A fossil mycoflora from Antarctica. In Actas VII Simposio Argentino Paleobotánica y Palinología (Buenos Aires), 187191.Google Scholar
Taylor, T.N. & White, J.F. 1989. Fossil fungi (Endogonaceae) from the Triassic of Antarctica. American Journal of Botany, 76, 389396.CrossRefGoogle Scholar
Taylor, T.N., Krings, M. & Taylor, E.L. 2015. Fossil fungi. London: Academic Press, 382 pp.Google Scholar
Taylor, T.N., Taylor, E.L. & Krings, M. 2009. Paleobotany: the biology and evolution of fossil plants. New York, NY: Academic Press, 1230 pp.Google Scholar
Truswell, E.M. 1989. Cretaceous and Tertiary vegetation in Antarctica: a palynological perspective. In Taylor, T.N. & Taylor, E.L., eds. Antarctic paleobiology: its role in the reconstruction of Gondwana. New York, NY: Springer, 7188.Google Scholar
Upchurch, G.R. & Askin, R.A. 1989. Latest Cretaceous and earliest Tertiary dispersed plant cuticles from Seymour Island. Antarctic Journal of the United States, 24 (5), 710.Google Scholar
Vajda, V. & McLoughlin, S. 2007. Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary – a tool for unraveling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology, 144, 99112.Google Scholar
Van Loon, L.C., Rep, M. & Pieterse, C.M.J. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135162.Google Scholar
Visscher, H., Sephton, M.A. & Looy, C.V. 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39, 883886.Google Scholar
Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R. & Traverse, A. 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93, 21552158.Google Scholar
Walker, C. & Trappe, J.M. 1993. Names and epithets in the Glomales and Endogonales. Mycological Research, 97, 339344.Google Scholar
Wang, B. & Qiu, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299363.Google Scholar
Wardle, D.A. & Lindahl, B.D. 2014. Disentangling global soil fungal diversity. Science, 346, 10521053.Google Scholar
Weaver, L., McLoughlin, S. & Drinnan, A.N. 1997. Fossil woods from the Upper Permian Bainmedart coal measures, northern Prince Charles Mountains, East Antarctica. AGSO Journal of Geology and Geophysics, 16, 655676.Google Scholar
White, J.F. & Taylor, T.N. 1988. Triassic fungus from Antarctica with possible Ascomycetous affinities. American Journal of Botany, 75, 14951500.Google Scholar
White, J.F. & Taylor, T.N. 1989a. An evaluation of sporocarp structure in the Triassic fungus Endochaetophora . Review of Palaeobotany and Palynology, 61, 341345.Google Scholar
White, J.F. & Taylor, T.N. 1989b. Triassic fungi with suggested affinities to the Endogonales (Zygomycotina). Review of Palaeobotany and Palynology, 61, 5361.Google Scholar
White, J.F. & Taylor, T.N. 1989c. A trichomycete-like fossil from the Triassic of Antarctica. Mycologia, 81, 643646.Google Scholar
White, J.F. & Taylor, T.N. 1991. Fungal sporocarps from Triassic peat deposits in Antarctica. Review of Palaeobotany and Palynology, 67, 229236.Google Scholar
White, M.E. 1969. Permian flora from the Beaver Lake area, Prince Charles Mountains, Antarctica. 2. Plant fossils. Bureau of Mineral Resources, Geology and Geophysics, 126, 1318.Google Scholar
Williams, L.A. & Crerar, D.A. 1985. Silica diagenesis. 2. General mechanisms. Journal of Sedimentary Petrology, 55, 312321.Google Scholar
Williams, L.A., Parks, G.A. & Crerar, D.A. 1985. Silica diagenesis. 1. Solubility controls. Journal of Sedimentary Petrology, 55, 301311.Google Scholar
Yao, Y.-J., Pegler, D.N. & Young, T.W.K. 1996. Genera of endogonales. Kew, London: Royal Botanic Gardens, 229 pp.Google Scholar
Zelmer, D.A. 1998. An evolutionary definition of parasitism. International Journal for Parasitology, 28, 531533.Google Scholar